您好,欢迎来到叨叨游戏网。
搜索
您的当前位置:首页桥架

桥架

来源:叨叨游戏网
起重机桥架的制造

起重机箱形主梁制造工艺 (一)进厂原材料复检 1.入库前应进行质量证明书检查 2.实物检查

3.理化性能测试

(二)主梁、支腿等重要零部件所用的材料的要求:

1.A1~A6级起重机,当板厚大于20mm时,钢材牌号应不低于Q235-B;对A7~A8级起重机,钢材牌号应不低于Q235-C。

2.环境温度-20℃~-25℃,或环境温度低于-25℃时,应选用Q235-D或16Mn,且要求在-20℃时的冲击功不小于27J。

3.严禁在低温下使用沸腾钢。这是因为①沸腾钢脱氧不完全,氧能使钢变脆;②内部杂质较高,成份偏析较大,因而冲击值较低;③冷脆倾向和时效敏感性较大;④焊接性较差。 (五)钢材预处理

热轧钢材表面通常有一层氧化皮,呈灰黑色,覆盖于钢材表面,应进行除锈喷丸等预处理,并进行防锈处理。通常采用的防锈底漆有703环氧脂铁红和无机硅酸锌底漆等。

锈是一种有氧化物和水分子的物质。锈和氧化物的危害有减弱结构件的承载能力,降低结构的涂漆质量,影响乙块火焰切割和焊接质量等。 (四)主梁的拼接与组装 1.盖板与腹板的拼接

2.腹板下料

主梁成拱最常用的方法是腹板下料成拱法。腹板的拱形可采用二次抛物线形或正弦曲线形。腹板上拱值规定为0.9~1.4S/1000,考虑气割、焊接电流、焊接速度、操作者技术程度等因素影响,多取1.4S/1000。腹板下料有三种方法:

(1)腹板拱度曲线直接号料法 (2)样板号料法

3.盖板、腹板对接焊缝焊接

(1)开坡口

盖板、腹板对接焊缝要求焊透,采取开坡口的方法,以增加熔深。板厚 时就要开坡口。 (2)板件拼接间隙和定位焊

①板件拼接间隙过大,焊接时易产生烧穿、焊缝成形不佳的缺陷,同时焊接变形也较大。 ②定位焊的技术要求

盖板、腹板定位焊前要检查一下板边的直线度和预拱值,可用拉粉线或钢丝线测量。

定位焊焊肉要比正式焊缝小,焊缝质量同正式焊缝,不得存在夹渣、裂纹、未焊透等缺陷,定位焊的间距,在根据拼接钢板定型的条件凭经验确定,通常长为20~40mm焊缝,间距在70~150mm范围内。 (3)引弧板和引出板

由于埋弧焊和气体保护焊的焊接速度快,引弧时焊件来不及达到局部的热平衡,使引弧端的熔深较浅。 (4)对接焊缝的焊接

主梁的盖板、腹板的对接焊缝要求焊透以保证为等强度连接。焊接方法可用手工焊、埋弧焊和气体保护焊等。焊接方式可分为双面焊和单面焊双面成形。 4.对接焊缝变形的控制

(1)对接焊缝角变形的矫正

盖板、腹板拼接时应先拼接宽度,然后再拼接长度。盖板、腹板接长时,为防止对接板件角变形,可在待焊接口下面加垫形成反变形,然后焊接。采用这种方法焊后可以使板件平直。

如果焊后出现角变形,可采取在焊缝处加垫用重砣压制等方法矫正(图4-20)。 (2)焊接方向

焊接方向对焊接变形有影响。直线型板件拼长对接时,翻个清根焊接第二面的方向要和焊第一面的方向相反。有拱度的板件如主梁的腹板,为不改变预定的腹板下料拱度曲线,也应采取上述的焊接方向。 二、箱形主梁半成品组装与焊接 (三)Ⅱ形梁内壁焊缝的焊接 1.焊接次序

焊接Ⅱ形梁内壁焊缝时,针对焊接次序对弯曲变形的影响,考虑要使Ⅱ形梁外弯,应先焊接Ⅱ形梁内腹板焊缝,后焊接外腹板焊缝。对偏轨箱形主梁要求主梁是直线形的,则焊接Ⅱ形梁内壁焊缝时应考虑焊接主腹板内壁长焊缝会产生较大的外弯,所以应先焊接副腹板焊缝,后焊接主腹板焊缝。 三、主梁整体组装焊接

(一)Ⅱ形梁组装定位焊下盖板

在制定主梁的工艺规程时,除要给出腹板下料的预制拱(翘)度数值外,还要给出Ⅱ形梁组装下盖板后的拱(翘)度值,以及单根主梁焊成后(未焊走台和轨道压板)的拱(翘)度值。

定位焊下盖板之前,应首先将Ⅱ形梁立起检查Ⅱ形梁的上拱度和水平弯曲,然后检查下盖板的水平弯曲,应使下盖板与Ⅱ形梁的水平弯曲方向一致。

如果发现某项指标超差,应采取适应措施进行调整。 (二)焊接梁的四条纵向角焊缝 五、桥架组装

(一)桥架组装焊接的工艺选择 1.作业场地的选择

只要主梁有温度差存在,就会有拱(翘)度的变化或水平弯曲(旁弯)的变化,箱形梁构成的桥架应选择在厂房内组装焊接。桥架的检测应在早、晚或夜间进行为好。

2.垫架位置选择

由于自重对主梁拱度有影响,主梁垫架位置应选择在主梁的跨端或接近于跨端的位置。起重量较小的桥架在最后测量调整时应尽量垫到端梁处。

3.桥架组装基准

为使桥架安装车轮后能正常运行,四组弯板应在同一平面内。组装时应使它们在同一水平面内,以这一水平面为组装调整桥架各部的基准。可穿过端梁上盖板的吊装孔立T形标尺,用水平仪测量调整。

4.为减小桥架整体焊接变形,在桥架组装前应焊完所有部件本身的焊缝,不要等到整体组装后再补焊。 (二)桥架组装焊接的工艺要点 1.主、端梁组装焊接

(1)两根主梁摆放在垫架上。在主梁的上盖板中心线处找出两主梁的跨度中心和跨端基准点,按技术要求调整各部件尺寸。

(2)端梁与主梁焊接时将使端梁两端向内弯而使桥架跨度缩短,帮桥架组装时应预先使端梁两端要外弯,且跨度要有加大量。

(3)为减小焊接变形和焊接应力,应先焊上盖板焊缝,再焊下盖板焊缝,然后焊连接板焊缝;先焊外侧焊缝,后焊内侧焊缝。各部焊接次序见图4-26。 2.组装焊接走台

(1)检测调整两主梁的不平弯曲。偏轨箱形梁或桁架还要在离主梁两端各1/3处上、下定位焊拉筋。

(2)为减小桥架的整体变形,走台的斜撑与连接板要按图纸尺寸预先装配焊接成组件,再进行桥架组装焊接。

(3)按图纸尺寸划走台的定位线。走台应和主梁上盖板平行。

(4)装配横向水平角钢。用水平尺找正,使外端略高于水平线定位焊于主梁腹板上。然后组装定位焊斜撑组件,再组装定位焊走台边角钢。走台边角钢应具有与走台相同的上拱度。 (5)走台的装配与焊接

①走台板应矫平,然后组装定位焊在走台上。要求先焊走台板与角钢连接的纵向焊缝,后焊横向走台板焊缝,以减小走台板的波浪变形和内应力。

②整个走台处于定位焊连接状态,水平刚性较小。应先焊接水平外弯大的一侧走台,后焊接水平外弯小的一

侧走台。

③为减小焊接走台主梁下挠应先焊接走台下部焊缝,后焊接走台上部焊缝。

3.组装焊接轨道压板

5~30t通用桥式起重机正轨箱形在焊接轨道压板前主梁上拱度f<1.5S/1000,偏轨箱形主梁在焊接轨道压板前上拱度f<1.3S/1000,应在主梁跨中顶起来焊接轨道压板。偏轨箱形梁焊接轨道压板还会产生主梁外弯,焊前应将两根主梁用角钢拉起来。小车轨道应平直,轨道与桥架组装,应预先在承轨梁上划出定位线,小车轨道组装时,使轨底与盖板接触,然后定位焊轨道压板。为使主梁受热均匀,从而使下挠曲线对称,可由多名焊工沿跨度均匀分布,同时焊接。

桥式起重机桥架组装焊接后应全面检测。 8.2.1.2 桥架结构特点及技术要求

箱形桥式起重机的桥架结构如图8-14所示,它是由主梁(或桁架)、栏杆(或辅助桁架)、端梁、走台(或水平桁架)、轨道及操纵室等组成。桥式起重机桥架常见的结构形式如图8-15所示。 桥架最主要的受力元件是主梁。主梁的制造是桥架金属结构制造的关键,主梁的主要技术要求如图8-14所示,应控制在上拱度(上挠)(0.9~1.4)S/1000。 水平旁弯(向走台侧) ,规定向走台侧旁弯的原因是在制造桥架时,走台侧焊后有拉伸残余应力,当运输及使用过程中残余应力释放后,导致两主梁向内旁弯;而且主梁在水平惯性载荷作用下,按刚度条件允许有一定侧向弯曲,两者叠加会造成过大的弯曲变形。当两梁向内旁弯时,可能导致车轮与轨道咬合,使起重机不能正常工作。

腹板波浪变形规定,受压区L/2000,受拉区 。

上盖板水平度≤B/250,腹板垂直度≤H/200,B为盖板宽度,H为梁高。

8.2.1.3

主梁工艺分析

主梁结构如图8-16所示。由于主梁内部有大量加筋板,加筋板的焊缝分布上下不均,横向大筋板与下盖板不焊接,而小加筋全部连续角焊缝都在水平中心线以上,因此,中心线以上焊缝数量多于中心线以下,这样极易造成主梁下挠。于是分析并保证如何使下挠最小,并且能预制上挠和造成一定旁弯(在焊接走台件之前)则是制定工艺的依据。 8.2.1.4

主梁制造工艺要点

(1)盖板和腹板对接焊工艺 (2)筋板的制造

筋板是一个长方形,长筋板中间一般也有减轻孔。由于筋板尺寸影响到装配质量,要求其宽度差只能小于1mm左右,长度尺寸允许有稍大一些的误差。筋板的四个角应保证90°,尤其是筋板与上盖板接触处的两个角更应严格保证直角。

(3)腹板上拱度的制备 (4)装焊Ⅱ形梁

Ⅱ形梁由上翼板、腹板和筋板组成。该梁的组装定位焊分为机械夹具组装和平台组装两种,目前应用较广的是采用平台组装工艺,又以上翼板为基准的平台组装居多。装配时,采用在上冀板上的划线定位的方式装配筋板,用90°角尺检验垂直度后进行点固(见图8-18)。为减小梁的下挠变形,装好筋板后应进行筋板与上翼板焊缝的焊接。为防止变形,如果翼板未预制旁弯,焊接方向应由内侧向外侧[见图8-19(a)],以满足一定旁弯的要求;如翼板预制有旁弯,则方向采用图8-19(b)所示方向。

组装腹板时,首先要求在上翼板和腹板上分别划出跨度中心线,然后用吊车将腹板吊起与翼板、盘板组装,使腹板的跨度中心线对准上翼板的跨度中心图线,然后在跨中点定位焊。腹板上边用安全卡1将腹板临时紧固到长筋板上,可在翼板底下打楔子使上翼板与腹板靠紧,通过平台孔安放沟槽限位板3,斜拉压杆2(见图8-20),并注意压杆要放在筋板处。当压下压杆时,压杆产生的水平力使下部腹板靠紧筋板。为了使上部腹板与筋板靠紧,可用专用夹具式腹板装配胎夹紧。

由跨中组装后定位焊至腹板一端,然后用垫块垫好,再装配定位焊另一端腹板。 (5)下翼板的装配

装配时先在下翼板上划出腹板的位置线,将Ⅱ形梁吊装在下翼板上,两端用双头螺杆将其压紧固定(见图8-22)。然后用水平仪和线锤检验梁中部和两端的水平和垂直度及拱度,如有倾斜或扭曲时,用双头螺杆单边拉紧。

当拱度不够时,应先焊下翼板左右两条纵缝;拱度过大时,应先焊上翼板左右两条纵缝。 采用自动焊焊接四条纵缝时,可采用图8-23所示的焊接方式。图8-23(a)所示为“船形”位置单机头焊,主梁不动,靠焊接小车移动完成焊接工作。平焊位置可采用双机头焊[见图8-23(b)、(c)],其中图8-23(b)所示为靠移动工件完成焊接,图8-23(c)所示为通过机头移动来完成焊接操作。

当采用焊条电弧时,应采用对称的焊接方法,即把箱形梁平放在支架上,由四名焊工同时从两侧的中间分别向梁的两端对称焊接,焊完后翻面,以同样的方式焊接另外一边的两条纵缝。 (7)主梁的矫正

箱形主梁装焊完毕后进行检查,每根箱形梁在制造时均应达到技术条件的要求,如果变形超过了规定值,应进行矫正。矫正时,应根据变形情况选择好加热的部位与加热方式,一般采用火焰矫正法。

起重机的卷筒(钢板圈制)为例:一、选择适宜的钢板,材质和厚度按设计要求和工艺需要(留有加工余量),并进行无损探伤检查;二、按设计要求选用合适的卷扳机进行卷制筒体,一般“环向的对接焊缝”按一类(级)焊缝要求进行检验, “纵向的对接焊缝”按二或三类(级)检验,总之焊缝不能有裂缝等的缺陷;三、选择加工单位进行机加工成形达到设计图纸要求

焊接要严格按工艺要求进行,一般Q235的厚度超过35毫米、Q345的厚度超过30毫米焊接时需要加热后才能焊接;卷制前材料的长度需要放(留)长卷制的压弯段约200毫米左右(由卷制单位工艺确定。 第二单元

卷筒是用来卷绕钢丝绳的部件,它承载起升载荷,收放钢丝绳,实现取物装置的升降。

1.概述

(1)卷筒的种类。按筒体形状,可分为长轴卷筒和短轴卷筒。按制造方式,可分为铸造卷筒和焊接卷筒。按卷筒的筒体表面是否有绳槽,可分为光面和螺旋槽面卷筒。按钢丝绳在卷筒上卷绕的层数,可分为单层缠绕卷筒和多层缠绕卷筒(见图6-15)。一般起重机大多采用单层缠绕卷筒,多层缠绕卷筒用于起升高度特大,或要求机构紧凑的起重机(例如汽车起重机)。

(2)卷筒的结构。卷筒是由筒体、连接盘、轴以及轴承支架等构成的。

单层缠绕卷筒的筒体表面切有弧形断面的螺旋槽,以增大钢丝绳与筒体的接触面积,并使钢丝绳在卷筒上的缠绕位置固定,以避免相邻钢丝绳互相摩擦而影响寿命。

多层缠绕卷筒的筒体表面通常采用不带螺旋槽的光面,筒体两端部有凸缘,以防止钢丝绳滑出。其缺点是钢丝绳排列紧密,各层互相叠压、摩擦,对钢丝绳的寿命影响很大。

卷筒的结构尺寸中,影响钢丝绳寿命的关键尺寸是卷筒的计算直径,按钢丝绳中心计算的卷筒允许的最小卷绕直径必须满足:

DOmin≥h1d

式中:D0min--按钢丝绳中心计算的滑轮和卷筒允许的最小卷绕直径,mm; d--钢丝绳直径,mm;

h1--卷筒直径与钢丝绳直径的比值。 2.钢丝绳在卷筒上的固定

通常采用压板螺钉或楔块(见图6-16),利用摩擦原理来固定钢丝绳尾部,要求固定方法安全可靠,便于检查和装拆,在固定处对钢丝绳不造成过度弯曲、损伤。

图6-16 钢丝绳在卷筒上的固定 (a) 光面的 (b) 螺旋槽面的

(1)楔块固定法(见图6-16a)。此法常用于直径较小的钢丝绳,不需要用螺栓,适于多层缠绕卷筒。 (2)长板条固定法(见图6-16b)。通过螺钉的压紧力,将带槽的长板条沿钢丝绳的轴向将绳端固定在卷筒上。

(3)压板固定法(见图6-16c)。利用压板和螺钉固定钢丝绳,方法简单,工作可靠,便于观察和检查,是最常见的固定形式。其缺点是所占空间较大,因此,不能用于多层卷绕。从安全考虑,压板数至少为2个。 钢丝绳尾部拉力可按柔韧体摩擦的欧拉公式计算:

式中:Smax--钢丝绳的最大拉力,一般指额定载荷时的钢丝绳拉力; --起升载荷动载系数;

e--自然对数的底(e=2.718…);

μ--摩擦系数,考虑有油,通常取μ≈0.12;

α--钢丝绳在卷筒上的包角。

为了保证钢丝绳尾的固定可靠,减少压板或楔块的受力,在取物装置降到下极限位置时,在卷筒上除钢丝绳的固定圈外,还应保留1.5~3圈安全圈,也称为减载圈,这在卷筒的设计时已经给予考虑。

在使用中,钢丝绳尾的圈数保留得越多,绳尾的压板或楔块的受力就越小,也就越安全。如果取物装置在吊载情况的下极限位置过低,卷筒上剩余的钢丝绳留数少于设计的安全圈数,就会由于钢丝绳尾受力超过压板或楔块的压紧力,从而导致钢丝绳拉脱,重物坠落。 3.卷筒安全使用要求

(1)卷筒上钢丝绳尾端的固定装置,应有防松或自紧的性能。对钢丝绳尾端的固定情况,应每月检查一次。在使用的任何状态,必须保证钢丝绳在卷筒上保留足够的安全圈。

(2)单层缠绕卷筒的筒体端部应有凸缘。凸缘应比最外层钢丝绳或链条高出2倍的钢丝绳直径或链条的宽度。

卷筒出现下述情况之一时应报废: ①裂纹;

②筒壁磨损量达原壁厚的20%;

③绳槽磨损量大于钢丝绳直径1/4且不能修复时。

QAY25吨全地面起重机是徐州重型机械厂引进国外先进技术,并结合我厂汽车起重机成熟的先进技术经验,最新研制开发设计的一种新产品,该产品已经通过国家级鉴定,在国内、外同行中已引起很大反响,标志着中国起重机的研发制造水平又迈上了一个新台阶。本产品液压系统设计具有很多优点;采用液压先导比例控制技术,开式变量泵定量马达系统,采用LRDS恒功率控制泵及液压比例、负载敏感控制阀;具有全桥转向、油气悬挂功能等特点。液压元件采用国际化配套,具有国外知名品牌,系统设计及元件选型具有高起点、高品位、高性能等优点。

一、动力元件

动力元件为三联泵,1号泵为斜盘式柱塞泵,提供主起升,副起升,变幅,伸缩所需要的动力,采用LRDS带压力切断和负载传感阀的恒功率控制变量泵。恒功率控制调节工作压力及泵的输出流量,以致在大负载或复合动作时不超过预定的驱动功率,避免发动机熄火。压力切断即恒压控制,当达到预先设定的压力值时,它使泵向小排量摆回,此功能优先于恒功率控制;负载传感阀是个流量控制阀,它根据比例换向阀前后压差来工作以调节泵的流量,使之适应执行元件的需要。恒功率控制和压力切断优先于负载传感阀。采用这种控制方式,使泵控品质和节能效果大为提高;2号泵为齿轮泵,供回转和下车支腿、悬挂、转向系统;3号泵采用小排量齿轮泵,为先导控制提供动力油源,通过先导手柄的操作来控制主阀芯的位移,从而实现起重作业的各种动作,这种单独为先导供油的控制方式,避免了主油路压力、流量的不稳定所造成的干扰。

二、控制元件

主阀:控制起重作业的主起升,副起升,变幅和伸缩,采用LV负载敏感、液压比例控制阀。在起重作业过程中,负载压力通过主阀反馈口XL 反馈到泵上,当泵出口压力与负载压力之间的压差增大或减小时,泵的摆角减小或增大,使泵的流量减小或增大,从而保持换向阀前后压差不变,使起重速度不受负载影响而保持恒定;换向阀阀芯的位移能根据先导阀的压力信号进行比例变化,从而能有效地控制各执行机构的动作。伸缩和变幅两个动作所需要的A、V口不同流量在阀内部就已经解决,不需要在外部增加流量调节阀,并且可以根据实际情况对压力进行重新调节。主阀内设有主溢流阀和次级溢流阀,主溢流阀控制整个系统的最高压力,每片阀中的次级溢流阀,用于保护各执行元件和管路不受过高压力损害。

回转阀:控制起重作业的回转动作,回转主阀为液控比例换向阀,实际压力,流量与负载有关,负载无动作时,低压卸荷。而且,回转还具有自由滑转、回转缓冲性能,使起重机在起动和制动时都比较平稳。回转缓冲阀内设有自由滑转电磁阀,其作用是:在起吊重物过程中,特别是当重物将要离开地面时,吊臂会受到侧向拉力,为防止吊臂弯曲或折断,这时可按下自由滑转控制开关,使得回转制动控制电磁阀和自由滑转电磁阀同时有电,将回转马达两工作口油路沟通,同时回转制动器也被打开,这样整个上车部分就处于浮动状态,吊臂在钢丝绳拉动下自动摆向重物的重心上方,从而保护了吊臂。

控制阀:采用一种逻辑集成控制装置,在集成单元里采用螺纹插装式逻辑梭阀、单向阀、电磁阀,通过逻辑顺序关系,实现对液压系统的变量泵、液控比例换向阀、定量马达等液压元件的控制和工作装置的安全保护控制,达到主机所要求的性能。该装置不仅简化了繁琐逻辑操纵过程和程序,而且缩小安装空间,减少由管路连接造成泄漏和管道振动等引起的故障。提高了系统的可靠性,简化了操作过程。控制阀内还设有三圈保护、安全卸荷电磁阀等保护装置,当主、副卷扬卷筒上的钢丝绳少于三圈时,三圈保护电磁阀有电,钢丝绳无法继续下放;安全卸荷电磁阀受力矩器控制,当负载力矩达到或超过设计值时,电磁阀有电,所有使力矩增大的动作均不能工作。

先导阀:用两个比例减压式先导阀去控制液控比例多路换向阀和液控比例回转换向阀,由于先导手柄的输出压力与摆角成正比,换向阀阀芯的位移与先导阀的输出压力成正比,所以起重作业的各种动作与先导手柄的操作角度成正比,操作者可通过操纵先导手柄的移动方向和位移大小来控制各执行机构的运动方向及运动速度,只要手柄轻轻一动,就能实现起重作业的各种动作,操作不仅灵活方便,舒适自如,使劳动强度大大降低,而且布置美观大方,深受用户的欢迎和喜爱。

三、执行元件

起升马达、回转马达均为定量马达,当压力不变时,能提供恒定的输出扭矩,保证起重平稳性。起升马达和平衡阀做为一体,使管路连接变得简单,减少了由管路连接造成的泄漏和管道振动。为保护马达,防止马达因过载(冲击)而损坏,起升马达内装有过载保护安全阀。起升平衡阀采用BVD进口平衡阀,主油路压力油则通过起升平衡阀内的梭阀经减压阀减压后开启起升制动器,从而进行正常的起升或下降动作。起升平衡阀利用主油路工作压力作为反馈压力,控制制动器的制动力矩起到安全保护作用,可以有效防止重物在下放过程中产生失速现象,保证重物下降速度平稳可靠,提高了安全性能,从而可以避免打夯和微动性差(抖动)等现象。

变幅油路根据重力下降的原理,采用先导操纵式平衡阀,使吊臂下落的速度完全由先导比例减压阀来无级控制,落臂时平稳可靠,而与负载无关。伸缩油缸活塞杆的头部装有插装式平衡阀,控制吊臂回缩过程的平稳性,结构紧凑,安装方便。

另外,本产品还具有油气悬挂功能,利用悬挂油缸支撑车体和蓄能器的吸收冲击原理,比传统的钢板弹簧具有更优越的减振性能;同时,当车辆行驶在不平路面时,车架具有自动调平功能,不仅保证车身的水平,而且减少了振动,提高了车辆的行驶平顺性,使驾驶员感到操作更舒适,减轻了疲劳;当车辆涉浅水或涵洞时,该机还具备车身升降功能,比普通车辆有更优良的通过性。

全地面起重机液压系统设计在国内处于领先地位,不仅具有很好的微动性能,省时省力等优点,而且在一些具体细节设计方面还有许多优越性能。它的试制成功,体现了前期的设计思想与设计水平,体现了液压系统设计、元件选型以及液压元件匹配的合理性。这一产品的试制成功,使全地面起重机产品的研发设计进入了一种新的领域,同时也为我们今后的新品设计和开发打下了坚实的基础。

来源于钢构之窗(www.steelwin.com) 一般是使用限速装置来控制重物控制重物 传动方法不同,使用装置不同, 钢丝绳====用引轮的大小来控制速度 液压装置====用压力来控制速度。

还有变速箱等均可。

如电梯的运行。三项设备都配合使用。 一般起重机及电梯等,物体的升降是通过钢丝绳的收方来实现的,钢丝绳被卷扬机收纳到筒上时重物被提升,从筒上放出来时滑轮组间距离增大,重物被放下;而卷扬机收纳或释放钢丝绳的方向与速度,由动力装置(电动机或内燃机)的正、反转速控制;当起吊时,动力装置正转,消耗能量提升重物,下降时动力装置反转,控制反转的速度,就控制了钢丝绳释放的速度,也就控制了重物下降的速度,当重力使重物下降加快时,动力装置消耗的能量,只允许卷扬机以一固定速度转动,抵消重力的作用。这和用手拉绳子提升重物,但仍需用一定力量拉住绳子,才能使重物以一定的速度下降是相似的。 起重机有用液压装置调整吊臂位置,液压铲车是利用液压装置提升、放下重物,其原理是利用活塞在油缸内运动,当控制进入或流出油缸的液体流速时,活塞运动速度就被改变。

卷筒是起重机的重要承重部件,通过电机的作用来卷绕钢丝绳以实现起吊重物的下降或提升,它承载起升载荷,收放钢丝绳,实现取物装置的升降。因此起重机械卷筒的安全性、可靠性非常重要。

(1)卷筒的种类。按筒体形状,可分为长轴卷筒和短轴卷筒。按制造方式,可分为铸造卷筒和焊接卷筒。按卷筒的筒体表面是否有绳槽,可分为光面和螺旋槽面卷筒。按钢丝绳在卷筒上卷绕的层数,可分为单层缠绕卷筒和多层缠绕卷筒(见图6-15)。一般起重机大多采用单层缠绕卷筒,多层缠绕卷筒用于起升高度特大,或要求机构紧凑的起重机(例如汽车起重机)。

(2)卷筒的结构。卷筒是由筒体、连接盘、轴以及轴承支架等构成的。

单层缠绕卷筒的筒体表面切有弧形断面的螺旋槽,以增大钢丝绳与筒体的接触面积,并使钢丝绳在卷筒上的缠绕位置固定,以避免相邻钢丝绳互相摩擦而影响寿命。

多层缠绕卷筒的筒体表面通常采用不带螺旋槽的光面,筒体两端部有凸缘,以防止钢丝绳滑出。其缺点是钢丝绳排列紧密,各层互相叠压、摩擦,对钢丝绳的寿命影响很大。

卷筒的结构尺寸中,影响钢丝绳寿命的关键尺寸是卷筒的计算直径,按钢丝绳中心计算的卷筒允许的最小卷绕直径必须满足:

DOmin≥h1d

式中:D0min--按钢丝绳中心计算的滑轮和卷筒允许的最小卷绕直径,mm; d--钢丝绳直径,mm;

h1--卷筒直径与钢丝绳直径的比值。

2.钢丝绳在卷筒上的固定

通常采用压板螺钉或楔块(见图6-16),利用摩擦原理来固定钢丝绳尾部,要求固定方法安全可靠,便于检查和装拆,在固定处对钢丝绳不造成过度弯曲、损伤。

(1)楔块固定法(见图6-16a)。此法常用于直径较小的钢丝绳,不需要用螺栓,适于多层缠绕卷筒。 (2)长板条固定法(见图6-16b)。通过螺钉的压紧力,将带槽的长板条沿钢丝绳的轴向将绳端固定在卷筒上。

(3)压板固定法(见图6-16c)。利用压板和螺钉固定钢丝绳,方法简单,工作可靠,便于观察和检查,是最常见的固定形式。其缺点是所占空间较大,因此,不能用于多层卷绕。从安全考虑,压板数至少为2个。

钢丝绳尾部拉力可按柔韧体摩擦的欧拉公式计算:

式中:Smax--钢丝绳的最大拉力,一般指额定载荷时的钢丝绳拉力; --起升载荷动载系数;

e--自然对数的底(e=2.718…); μ--摩擦系数,考虑有油,通常取μ≈0.12;

α--钢丝绳在卷筒上的包角。

为了保证钢丝绳尾的固定可靠,减少压板或楔块的受力,在取物装置降到下极限位置时,在卷筒上除钢丝绳的固定圈外,还应保留1.5~3圈安全圈,也称为减载圈,这在卷筒的设计时已经给予考虑。

在使用中,钢丝绳尾的圈数保留得越多,绳尾的压板或楔块的受力就越小,也就越安全。如果取物装置在吊载情况的下极限位置过低,卷筒上剩余的钢丝绳留数少于设计的安全圈数,就会由于钢丝绳尾受力超过压板或楔块的压紧力,从而导致钢丝绳拉脱,重物坠落。

3.卷筒安全使用要求

(1)卷筒上钢丝绳尾端的固定装置,应有防松或自紧的性能。对钢丝绳尾端的固定情况,应每月检查一次。在使用的任何状态,必须保证钢丝绳在卷筒上保留足够的安全圈。

(2)单层缠绕卷筒的筒体端部应有凸缘。凸缘应比最外层钢丝绳或链条高出2倍的钢丝绳直径或链条的宽度。

卷筒出现下述情况之一时应报废: ①裂纹;

②筒壁磨损量达原壁厚的20%;

③绳槽磨损量大于钢丝绳直径1/4且不能修复时。

超载器也称起重量器,是一种超载保护安全装置。其功能是当载荷超过额定值时,使起升动作不能实现,从而避免超载。有机械式、电子式等多种类型(见图7-1),机械式超载器通过杠杆、弹簧、凸轮等的作用带动撞杆,当超载时,撞杆与开关相碰,切断起升机构的动力源,控制起升机构中止运行。

电子式超载器是由传感器、运算放大器、控制执行器和载荷指示计等部分组成,将显示、控制和报警功能集于一身。当起重机起吊物品时,传感器产生变形,把载荷重量转化为电信号,经过运算放大,指示出载荷的数值。当载荷达到额定值的 90%时,发出预警信号;当载荷超过额定载荷时,切断起升机构的动力源。超载器广泛用于桥式类型起重机和升降机。有些臂架类型起重机(如塔式起重机、门座起重机)将超载器与力矩器配合使用。

起重机卷筒与钢丝绳缠绕

钢丝绳在卷筒上的缠绕无非单层和多层的区别,单层容易控制,而多层就比较难,尤其是多层后的乱绳问题。

钢丝绳或许是任何提升设备最重要的元件,必须正确无误地卷绕到绞车卷筒上,才能顺利地进行作业。带有绳槽的卷筒有助于将钢丝绳整齐地卷绕,避免钢丝绳乱绳。钢丝绳的卷绕,要尽量平滑,这样才能发挥钢丝绳的性能,延长使用寿命。

钢丝绳卷绕在卷筒上的理想形式是一定要开始于卷筒的一端,每当卷筒旋转一圈时,新卷绕的钢丝绳恰好落在下面一层钢丝绳的绳股之间。当钢丝绳卷绕到卷筒的另一端(或法兰)时,钢丝绳开始卷绕第二层,然后再整齐地卷绕到它最先开始的法兰处。

当卷筒上有几层钢丝绳时,上层钢丝绳有可能挤压下层钢丝绳。若上层绳股与下层绳股成一定角度,问题尤其严重。

卷筒上若有为钢丝绳导向的绳槽,将有助于卷绕顺利进行。绞车卷筒基本有两种绳槽形式,一是螺旋式的,一是折线式的。

螺旋式绳槽就像一条螺旋线,或者像螺栓的螺纹线。螺旋式绳槽有助于引导钢丝绳整齐地卷绕在卷筒上,避免钢丝绳的损坏。然而,这种几何形状绳槽的问题是,当钢丝绳到达卷筒的一端时,虽然第一层能够整齐地卷绕在整个卷筒上,但不能引导第二层钢丝绳沿着卷筒整齐地绕回,相反,第二钢丝绳自然地按一定的角度压在下面一层钢丝绳上。解决这一问题的办法是在端部法兰上增加一个凸台。即使这样,螺旋式绳槽也不适用于两层以上钢丝绳的卷绕方式。早在上世纪50年代,Frank LeBus就设计了解决这个老问题的方案。Frank LeBus是一位向油田提供设备的美国人,1937年他利用一根绳槽导杆解决了提升卷筒卷绕钢丝绳的问题,并获得了专利。后来他对这个专利进行了改进,称为LeBus双折线卷绕系统。该系统的几何形状与众不同,除了两处是折线外,绳槽与卷筒的法兰(边缘)平行。

折线绳槽意味着第二层钢丝绳没有与第一层钢丝绳交叉,它大部分卧在下面一层钢丝绳所形成的绳槽中。它把卷绕钢丝绳交叉的长度减少到卷筒圆周长度的20%左右,而剩下的80%则与内层钢丝绳一样平行于卷筒的法兰。

折线绳槽使各层之间的负荷均匀分布,实践证明大大延长了钢丝绳的寿命。事实上,试验表面可延长钢丝绳寿命500%以上。减少钢丝绳的损坏就是提高安全性,并且减少了机械的停工时间。

折线绳槽卷筒一般常称之为Lebus卷筒,这种几何形状的绳槽则称之为Lebus绳槽,是以它的发明人命名的。从技术角度上来讲,这种称谓是不正确的,因为Frank的孙子Charles拥有的Lebus国际公司今天仍然存在,并一直生产绞车卷筒和相关卷绕钢丝绳的设备。它的总部设在美国得克萨斯州的longview市,在德国、英国和日本均有姊妹公司。Lebus国际公司今天仍然生产与其名称相同的设备,而其他的公司也生产自己的折线绳槽卷筒。称呼这些卷筒为Lebus卷筒就像称呼所有的履带挖掘机为卡特彼勒挖掘机一样,是不合适的。 折线绳槽卷筒的缺点在于,它比较复杂,所以比螺旋绳槽卷筒的价格贵一点。然而,这额外的费用因节省钢丝绳而很快地得到补偿,因为钢丝绳价格很贵,并且更换新的钢丝绳也占用了生产时间。

折线绳槽卷筒也需要一定的作业条件。这些条件中最重要的一个条件是钢丝绳的偏角,它是钢丝绳从卷筒到第一个固定滑轮之间的角度,一般来讲,这个偏角不应大于1.5°,并且不应小于0.5°。虽然有些公司稍有差异(大约有0.25°的变化),但记住这个通用的数据是有好处的。最佳的偏角还取决于负荷、钢丝绳结构和提升速度。这一偏角表明,卷筒距离滑轮每10m,钢丝绳距离卷筒中点的距离不应大于260mm(两法兰之间为520mm)。

应用螺旋绳槽的卷筒,偏角可达3o,因为绳槽与法兰就有一个角度,只卷绕一层钢丝绳问题不大。如果第二层有这样大的一个偏角,那么钢丝绳将会因折弯过大而留下间隙,这会损坏钢丝绳。对于在卷筒上只有一层钢丝绳的作业来讲,螺旋绳槽通常是最好的选择。在多层钢丝绳作业方面,折线绳槽具有更高的效率。 对于折线绳槽卷筒来说,若其偏角超过推荐的范围,可以利用一个称之为角度补偿器的特殊装置进行补偿。

对于多层卷绕的钢丝绳作业,重要的是第一层钢丝绳的卷绕应在拉力下进行,避免内层钢丝绳松弛,被外层钢丝绳挤压或捻压到槽壁上而损坏。

一般钢丝绳拉得愈紧,卷绕得愈好。据LeBus推荐,钢丝绳应承受至少2%的破坏载荷或10%的作业载荷。当然对于安全系数和钢丝绳的设计来说,必须做好承受破坏载荷的准备工作。但是向专家咨询,决不是

一个坏主意。

折线绳槽卷筒的设计和制造,要满足提升作业的特殊要求,绳槽的型式要适应钢丝绳的长度、直径和结构类型。

在某些作业方面,省钱的办法是采用一台光卷筒和一个带有折线绳槽的外衬套,将衬套横向切成两部分,用螺栓或焊接将其固定到或焊到光卷筒上。如果将来采用不同类型或规格的钢丝绳的话,可将衬套取下,用为新钢丝绳设计的衬套取代旧衬套。

单位就像一棵爬满猴子的树,向上看全是屁股,向下看全是笑脸,每个人都想使劲向上爬几个树杈,以期看到更多的笑脸。

快乐,不是拥有的多,而是计较的少! 有舍才有得,所以叫舍得!!!

心若改变,你的态度跟着改变;态度改变,你的习惯跟着改变;习惯改变,你的性格跟着改变;性格改变,你的人生跟着改变。

在顺境中感恩,在逆境中依旧心存感恩。 因为爱过,所以慈悲;因为懂得,所以宽容。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- gamedaodao.net 版权所有 湘ICP备2024080961号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务