一、四年级数学上册应用题解答题
1.学校跑道每圈长200米。同学们每天绕跑道跑3圈,一个月(按22天计算)跑多少米?
解析:13200米 【分析】
跑道每圈长200米,同学们每天绕跑道跑3圈,根据乘法的意义可知,同学们每天跑200×3米,又因为一个月(按22天计算),则同学们22天跑200×3×22米,据此解答即可。 【详解】 200×3×22 =600×22 =13200(米)
答:一个月(按22天计算)跑13200米。 【点睛】
解答本题的依据为乘法的意义,即求几个相同加数和的简便计算。
2.一个平行四边形的花坛,相邻两边的长度和是18米.这个平行四边形花坛的周长是多少米? 解析:36米 【解析】 【详解】 18×2=36(米)
答:这个平行四边形花坛的周长是36米.
3.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.
解析:260千米 【详解】
画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线)
可以发现第一次相遇意味着两车行了一个B、A两地间距离,第二次相遇意味着两车共行了三个B、A两地间的距离.当甲、乙两车共行了一个B、A两地间的距离时,甲车行了95千米,当它们共行三个B、A两地间的距离时,甲车就行了3个95千米,即
(千米),而这285千米比一个B、A两地间的距离多25千米,可得:
(千米).
4.王阿姨每天跑多少米?
解析:4000米 【分析】
一个来回是2个这段路的长度,即8个来回是16个这段路的长度,因此用250乘16。 【详解】 8×2=16(个) 250×16=4000(米) 答:王阿姨每天跑4000米。 【点睛】
此题考查的是三位数乘两位数的计算,先计算出8个来回是16个这段路的长度是解答此题的关键。
5.丽丽家的厨房铺地砖,有两种方案。方案一:铺边长是3分米的正方形地砖,需要100块。方案二:铺长3分米、宽2分米的长方形地砖。 (1)丽丽家厨房的面积是多少平方分米?合多少平方米? (2)若采用第二种方案,则需要多少块长方形地砖? (3)哪种方案比较便宜?
解析:(1)900平方分米;9平方米 (2)150块 (3)方案二 【分析】
(1)先根据方案一计算出厨房的面积,用3乘3计算出一块正方形地砖的面积,然后用一块正方形地砖的面积乘100即可,然后将单位化成平方米,用计算出的面积除以100即可。
(2)先用3乘2计算出一块长方形地砖的面积,然后用厨房的面积除以一块长方形地砖的
面积即可。
(3)用一块正方形地砖的价钱乘正方形地砖的块数计算出方案一需要的钱;再用一块长方形地砖的价钱乘长方形地砖的块数计算出方案二需要的钱,然后进行比较。 【详解】
(1)3×3=9(平方分米) 9×100=900(平方分米) 900平方分米=9平方米
答:丽丽家厨房的面积是900平方分米,合9平方米。 (2)3×2=6(平方分米) 900÷6=150(块)
答:若采用第二种方案,则需要150块长方形地砖。 (3)23×100=2300(块) 15×150=2250(元) 2250<2300,方案二便宜 答:方案二比较便宜。 【点睛】
此题考查的是长方形面积的实际运用,先根据正方形地砖的边长和需要的块数计算出厨房的面积是解答此题的关键。
6.草莓是春季第一果,它的外观诱人,酸甜可口,维生素C含量比苹果、葡萄高710倍,被誉为“水果皇后”。贫困户李大爷在农业技术员精心指导下种植草莓成功脱贫。他去年种了一个大棚,总产量为1400千克,今年增加了大棚数量,总产量比去年的2倍还多40千克。他采用了进棚自摘、零售、批发、网络销售等多种销售渠道,如果按平均每千克卖30元计算,今年李大爷家种的草莓可卖多少钱? 解析:85200元 【分析】
根据题意,可找出数量之间的相等关系式为:今年的总产量=去年的总产量×2+40,据此列出等式即可解答。 【详解】 2×1400+40 =2800+40 =2840(千克) 2840×30=85200(元)
答:今年李大爷家种的草莓可卖85200元。 【点睛】
此题属于两步需要逆思考的应用题,关键是找出数量间的相等关系式。
7.王叔叔从A地出发,以每小时48千米的速度去B地送货,用了5小时到达。原路返时用了4小时,返回时平均每小时行多少千米? 解析:60千米 【分析】
由“以每小时48千米的速度去B地送货,用了5小时到达”可根据关系式:速度×时间=路程,求出从A、B两地的距离;要求王叔叔返回时的速度,用求出的路程除以返回的时间,列式解答即可。 【详解】 48×5÷4 =240÷4 =60(千米)
答:返回时平均每小时行60千米。 【点睛】
此题运用了关系式:速度×时间=路程,路程÷时间=速度,解答此题的关键是求出两地之间的距离是多少。
8.一辆货车载满货物从甲城开往乙城用了8小时,每小时行45千米,从乙城返回甲城只用了6小时,这辆货车返回时平均每小时行多少千米? 解析:60千米 【分析】
首先用从甲城开往乙城用的时间乘货车开往乙城的速度从而计算出甲乙两城之间的距离,然后用距离除以返回用的时间就是返回时的速度。 【详解】 45×8=360(千米) 360÷6=60(千米)
答:这辆货车返回时平均每小时行60千米。 【点睛】
此题考查的是普通的行程问题,先计算出甲乙两城的距离是解答此题的关键。
9.快餐店重新装修,张经理带8000元钱去市场采购.已知每张桌子128元,每个凳子24元,每台电磁炉195元。
(1)张经理要买11张桌子和108个凳子,共需花多少钱? (2)张经理用剩下的钱还想买19台电磁炉,钱够吗? 解析:(1)11×128+108×24=4000(元) (2)够 【解析】 【详解】
(1)每张桌子128元,每个凳子24元,那么11张桌子就是11×128,108张凳子就是108×24,一共需要11×128+108×24=4000元。
(2)由第一题可知买11张桌子和108个凳子共花费了4000元,张经理带8000元钱去市场采购,还剩4000元,每台电磁炉195元,(8000-4000)÷195=20……100,可以买20个微波炉,还剩下100元,所以钱够用来买19个微波炉。
10.下图中长方形花圃的长增加到54米,宽不变,扩建后的面积是多少平方米?
①你认为谁的想法是正确的,请在她名字后面的括号里打√ ②你喜欢谁的想法,说说她解决问题的思路。 解析:(1)小兰;小慧 (2)小慧,解题思路见详解 【分析】
小兰的想法是先求出长方形的宽,再求出长方形的面积。小慧的想法是根据积的变化规律,长扩大到原来的3倍,宽不变,则面积也扩大到原来的3倍。小丽的想法是先求出长方形的宽,再求出长方形的面积。进而求出增加的面积。小美的想法是先求出长扩大到原来的3倍,再求出增加的面积。题目要求的是扩建后的面积,而不是增加的面积,则小兰和小慧的想法正确,小丽和小美的想法错误。 【详解】
(1)小兰:(√) 小慧:(√) 小丽:(×) 小美:(×)
(2)我更喜欢小慧的想法。长方形的面积=长×宽,根据积的变化规律可知,长扩大几倍,宽不变,则面积扩大相同倍数。小慧的解题思路是先求出长扩大的倍数,再求出扩建后花圃面积。 【点睛】
本题考查长方形面积公式和积的变化规律的灵活运用。长方形的面积=长×宽。积的变化规律:如果一个因数扩大几倍或缩小为原来的几分之几,另一个因数不变,那么积也扩大相同倍数或缩小为原来的几分之几。
11.兄弟两人早晨7时同时从家里出发去上学,兄每分钟走100米,弟每分钟走60米,兄到了学校后休息了5分钟才发现英语书没带,立即回家,途中7时25分与弟相遇,学校离家有多远?
解析:1750米 【分析】
根据题意,可知弟弟共走了25分钟,哥哥共走了20分钟,兄弟二人一共走了从家到学校路程的2倍,进而用路程的2倍除以2问题得解。 【详解】
弟弟共走了:7时25分-7时=25分 哥哥共走了:25-5=20(分) 学校离家:(100×20+60×25)÷2 =(2000+1500)÷2 =3500÷2 =1750(米)
答:学校离家有1750米。 【点睛】
解决此题关键是先求出兄弟两人各走得时间和一共走得路程,进而问题得解。 12.动手实践,解决校园中的数学问题。
(1)学校游乐场长约10米,宽约9米,面积大约是多少?
(2)学校要更换校园中游戏场的橡胶。如果有28000元的费用,你会选择哪一种橡胶,请说明理由。
名称 红橡胶 绿橡胶 黄橡胶 价格(元/m2) 320 300 280 解析:(1)90平方米
(2)我选绿橡胶,因为绿橡胶需要的费用比28000少,并且最接近28000元。 【分析】
(1)直接用10乘9就是操场的面积。
(2)将每种橡胶需要的费用计算出来,然后比较即可,尽量选费用少于28000元,并且最接近28000元的橡胶。 【详解】
(1)10×9=90(平方米)
答:学校游乐场的面积大约是90平方米。 (2)90×320=28800(元) 90×300=27000(元) 90×280=25200(元)
28800>28000>27000>25200,因此我选绿橡胶。
答:我选绿橡胶,因为绿橡胶需要的费用比28000少,并且最接近28000元。
【点睛】
此题考查的是长方形面积的实际运用,熟练掌握三位数与两位数的乘法计算是解答此题的关键。
13.甲地到乙地有352千米,一辆货车平均每小时行驶92千米,4小时能到达乙地吗?
( )小丁: 92≈90 90×4=360(千米) 360>352 4小时能到站 ( )小明: 352≈360 ( )小红: 360÷4=90(千米) 90<92 4小时能到站 92×4=368(千米) 368>352 4小时能到站 解析:能到达; 【分析】
小丁:把平均每小时行驶的路程看作90干米,那么4小时行驶的路程定大于360千米 ,所以能到站;这种估算方法对;
小明:把352千米看作360千米,用360除以4求出每小时行驶的路程。每小时行驶的路程小于92千米,所以能到站;这种估算方法对;
小红:用每小时行驶的路程乘4求出一共能行驶的路程,然后与总路程比较后判断能到站;这种实际计算方法对。 【详解】 根据分析可得:
( √)小丁: 92≈90 90×4=360(千米) 360>352 4小时能到站 答:4小时能到达乙地。 【点睛】
本题考查简单的行程问题,可以用估算也可以用实际计算解决。
14.某人步行每分钟走90米,从甲地到乙地要22分钟才能到达,当他步行了480米后,改乘汽车,他乘汽车行了多少米? 解析:1500米 【分析】
首先根据速度×时间=路程,用某人步行的速度乘从甲地到乙地用的时间,求出两地之间的距离;然后用两地之间的距离减去已经行的路程,求出他乘汽车行了多少米即可。 【详解】 90×22-480 =1980-480 =1500(米)
(√)小明: 352≈360 (√)小红: 360÷4=90(千米) 90<92 4小时能到站 92×4=368(千米) 368>352 4小时能到站 答:他乘汽车行了1500米。 【点睛】
此题主要考查行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握。
15.一间房子长18米,宽15米,用边长是3分米的方砖铺地,需要多少块? 解析:3000块 【分析】
首先根据长方形的面积公式、正方形的面积公式,分别求出一间房子的面积和每块方砖的面积,然后用房子的面积除以每块方砖的面积即可。 【详解】 18米=180分米 15米=150分米 180×150÷(3×3) =180×150÷9 =27000÷9 =3000(块) 答:需要3000块。 【点睛】
本题主要考查了学生对长方形和正方形面积公式的掌握,注意单位要统一。 16.红旗小学四年级师生去公园游玩,学生有156人,老师有12人,儿童票为每人12元,成人票为每人24元,他们买门票一共要花多少元? 解析:2160元 【分析】
总价=单价×数量,据此分别求出买156张儿童票和12张成人票的价钱,再将两个价钱加起来,求出花费总钱数。 【详解】 12×156+24×12 =1872+288 =2160(元)
答:他们买门票一共要花2160元。 【点睛】
本题考查经济问题,关键是熟记公式总价=单价×数量。 17.张师傅用铁丝做一些不同形状和大小的框架(如下表)。
形状 平行四边形 等腰梯形 长方形 大小(dm) 张师傅用200dm长的铁丝做了6个平行四边形框架。 (1)小刚根据上面信息解决了一个问题,见下边算式
请你在下面横线上写出这个问题:________________________ (2)如果张师傅用剩下的铁丝做等腰梯形,还能做几个? (3)根据题目中的信息,请你再提出一个问题(不用解答)。 解析:(1)做了6个平行四边形框架后剩下的铁丝长度是多少? (2)7个 (3)见详解 【分析】
(1)(3+4)×2×6=84(dm),求出的是6个平行四边形框架需要用铁丝的长度,200-84=116(dm),求的是200dm铁丝,做了6个平行四边形框架后剩下的铁丝长度。所以可以提问:做了6个平行四边形框架后剩下的铁丝长度是多少? (2)用剩下的铁丝除以等腰梯形的周长即可解答。 (3)根据题目给的条件,提出合理的问题即可。 【详解】
(1)根据分析可知,这个问题是:做了6个平行四边形框架后剩下的铁丝长度是多少? (2)3+5+4+4=8+8=16(dm) 116÷16=7(个)……4(dm) 答:还能做7个等腰梯形。
(3)做4个长方形框架要铁丝多少分米? 【点睛】
熟练掌握平行四边形、梯形、长方形周长计算方法是解答本题的关键。
18.桃李小学做了一块平行四边形宣传牌,它的周长是3米,其中一条边长60厘米,这块宣传牌的另外三条边分别是多少厘米? 解析:60厘米 90厘米 90厘米 【详解】 略
19.一个平行四边形的一条边长是14厘米,它的邻边比它短2厘米,这个平行四边形的周长是多少厘米? 解析:52厘米 【详解】 14﹣2=12(厘米) (14+12)×2 =26×2 =52(厘米)
答:这个平行四边形的周长是52厘米。
20.一辆压路机,每分钟行驶100米,压路机的前轮宽度是20分米。这辆压路机压路40分钟,可以压平路面多少平方米? 解析:8000平方米 【分析】
先将20分米化成米,低级单位化高级单位就除以进率10;
再根据长方形的面积=长×宽,先求出每分钟压路的面积,然后用每分钟压路的面积乘行驶时间即可。 【详解】 20分米=2米 100×2=200(平方米) 200×40=8000(平方米) 答:可以压平路面8000平方米。 【点睛】
熟练掌握长方形面积的实际运用是解答此题的关键。 21.妈妈为全家人准备晚饭。
择菜 6分钟 洗菜 3分钟 淘米 2分钟 煮饭 18分钟 切菜 3分钟 经过合理安排,做完这些事至少需要多少分钟?(用图示的方法表示出来并计算出所需时间) 解析:20分钟 【分析】
要使需要的时间最短,应先淘米,然后煮饭,在完成煮饭这项任务的同时,可完成摘菜、洗菜和切菜这三项任务。则一共需要2+18=20分钟。 【详解】
2+18=20(分钟)
答:做完这些事至少需要20分钟。 【点睛】
本题考查优化问题,要想时间最短,应合理安排各项任务之间的顺序,注意同时进行的两项任务应互不干扰。
22.一条隧道长360米,其中火车从车头入洞到全车进洞共用了8秒,从车头入洞到全车出洞共用了20秒。这列火车长多少米? 解析:240米
【分析】
火车从车头入洞到全车进洞用了8秒钟,说明火车8秒所行的路程就是火车的车身长,从车头入洞到全车出洞共用了20秒钟,20秒所行的路程是隧道长加车长,20-8=12(秒),这12秒所行的路程就是隧道的长度,由此用360÷12可得火车的速度,用速度乘8即得火车的车身长度。 【详解】 360÷(20-8) =360÷12 =30(米) 30×8=240(米) 答:这列火车长240米。 【点睛】
本题考查路程、速度、时间的关系和应用,掌握路程=时间×速度,是解题的关键。 23.某超市新年促销。一种拖鞋的单价是16元/双,买3双送一双。王老师带了176元钱,最多能买到几双这样的拖鞋? 解析:14双 【详解】 略 24.
解析:17件,15元 【详解】
436÷49=8(份)……44(元) 44÷29=1(件)……15(元) 2×8+1=17(件)
25.小乐每分钟走65米,小红每分钟走60米.从家到学校小红比小乐多走5分钟.小红家
离学校多少米?
解析:780米 【详解】
60×(520÷65+5)=780(米) 答:小红家离学校780米.
26.一个团队有220人需要租车.汽车出租公司有三种车,甲车限坐48人,每辆每天500
元;乙车限坐20人,每辆每天250元;丙车限坐28人,每辆每天320元.
(1)如果只租一种汽车,租哪一种汽车用的钱最少? (2)如果租两种汽车,怎样租车用的钱最少? 解析:(1)甲车。 (2)4辆甲车和1辆丙车。
【解析】解答本题的关键是根据单价×数量=总价求出需要的钱数,此题在解答需要车辆的数量时应注意,用“进一法”保留整数。
27.一辆汽车从相距630千米的甲地开往乙地,如果4小时行了280千米。照这样计算,这辆汽车从甲地出发多少小时才能到达乙地? 解析:9小时 【分析】
先用280除以4计算出汽车行驶的速度,然后用630除以行驶的速度就是行驶的时间;依此列式并计算。 【详解】
280÷4=70(千米/小时) 630÷70=9(小时)
答:这辆汽车从甲地出发9小时才能到达乙地。 【点睛】
此题考查的是行程问题的计算,先计算出汽车行驶的速度是解答此题的关键。
28.现有一个96人的旅游团租车出游,一辆大车限乘36人,租金235元;一辆小车限乘24人,租金185元。怎样租车最省钱?需要多少钱? 解析:租2辆大车和1辆小车最省钱;655元 【分析】
根据题意知道,大车每个座位费用为235÷36=6(元)……19(元),小车每个座位费用为185÷24=7(元)……17(元),大车座位费要便宜一些,要尽可能多采用大车,并且空座位最少时便宜。 【详解】
根据分析,列式为: 96÷36=2(辆)……24(人) 24÷24=1(辆) 235×2+1×185 =470+185 =655(元)
答:租2辆大车和1辆小车最省钱,租金为655元。 【点睛】
解答此题的关键是,设计租车方案时,尽可能多采用座位费用少的车辆,并且空座位也尽量的少。
29.有8盒茶叶,如果从每盒中取出120克,那么8盒中剩下的茶叶正好和原来7盒茶叶的质量相等。原来一共有茶叶多少克? 解析:7680克 【解析】 【详解】
120×8×8=7680(克)。取出的茶叶质量正好是1盒茶叶的质量。 30.文体用品店运进5800个乒乓球,每25个装一袋,每4袋装一盒。
解析:够用 【分析】
用乒乓球的总个数除以一袋装乒乓球的个数,求出可以装的袋数。再除以一盒装乒乓球袋数,求出可以装的盒数。再和60个盒子比较大小解答。 【详解】 5800÷25÷4 =232÷4 =58(个) 58<60
答:准备60个盒子,够用。 【点睛】
本题考查两步连除解决实际问题,可以先求出装的袋数,也可以先求出一盒装乒乓球个数。
31.社区有一块绿地(如图),现在要进行改造。改造后绿地的长增加到36米,宽不变,扩大后绿地的面积是多少?
解析:504平方米 【分析】
方法一:已知原来的长是18米,面积是252平方米,根据长方形的面积公式:长方形的面积=长×宽,由此可以求出原来的宽。然后用增加后的总长×宽即可求出扩大后绿地的面
积。
方法二:由于宽不变,长增加到36米,也就是长扩大了2倍,面积也扩大2倍,直接用原来的面积乘2即可。 【详解】 方法一: 252÷18×36 =14×36 =504(平方米)
答:扩大后绿地的面积是504平方米。 方法二: 252×(36÷18) =252×2 =504(平方米)
答:扩大后绿地的面积是504平方米。 【点睛】
此题主要考查长方形面积公式的灵活运用。
32.一批游客共28人(其中大人20人,儿童8人)去博物馆参观,票价如下图所示,他们怎样买票比较合算?最少需要多少钱?
解析:20名大人买团体票,8名儿童买儿童票,这样买票比较合算;最少需要520元 【分析】
抓住题干中的购票方案,因为成人票不如团体票便宜,所以成人尽量购买团体票;同理,因为学生票比团体票便宜,所以学生尽量购买学生票;据此分别算出应付的钱数进行比较,即可解决问题。 【详解】
方案一:20名大人买成人票,8名儿童买儿童票,需要花费的钱数为: 20×30+8×15 =600+120 =720(元)
方案二:28人全部买团体票,需要花费的钱数为:28×20=560(元) 方案三:20名大人买团体票,8名儿童买儿童票,需要花费的钱数为: 20×20+8×15 =400+120 =520(元) 520<560<720
答:20名大人买团体票,8名儿童买儿童票,这样买票比较合算。最少需要520元。
【点睛】
选用哪种方案和团队中成人与儿童的人数有关,如果成人多于一定数量,则购团体票便宜,反之分开购票便宜。
33.某班45名同学去划船,租一条大船需100元,可坐六人,一条小船80元,可坐四人,请设计一种租船方案,使租金最少。 解析:7条大船和1条小船;780元 【分析】
两条船的的载客数分别为6人和4人。可以只选择一种船,也可以选择两种船,每条船都坐满。用列表的方法把不同的运送方案一一列举出来,再选择最优方案。 【详解】 租船方案 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ 大船 7条 6条 5条 4条 3条 2条 1条 0条 小船 0条 1条 3条 4条 6条 7条 9条 10条 12条 乘坐人数 48人 46人 48人 46人 48人 46人 48人 46人 48人 租金 800元 780元 840元 820元 880元 860元 920元 900元 960元 答:租7条大船和1条小船租金最少,租金是780元。 【点睛】
根据已知条件和数量关系将所有可能的方案一一列举出来,然后再从各种方案中选择最优方案。
34.四年级两位老师带38名同学去参观博物馆,成人门票50元,儿童门票25元;如果10人以上(包含10人)可以购团票每人30元,怎样购票最划算?要花多少钱? 解析:分开购票或2位老师和8名学生买团体票,30名学生买儿童票;1050元 【分析】
抓住题干中的三种购票方案,因为成人票不如团体票便宜,所以成人尽量购买团体票;同理,因为儿童票比团体票便宜,所以学生尽量购买学生票;据此按分开购票、合购团体票,分别算出应付的钱数进行比较,即可解决问题。 【详解】 ①分开购票: 50×2+25×38
=100+950 =1050(元) ②合购团体票: 30×(38+2) =30×40 =1200(元)
③2位老师和8名学生买团体票,30名学生买儿童票: 25×30+30×10 =750+300 =1050(元) 1200>1050
答:分开购票或2位老师和8名学生买团体票,30名学生买儿童票,这样较划算;要花1050元钱。 【点睛】
选用哪种购票方式与大人和学生的多少有关系,如果学生数多于一定数值则购买儿童票合算,如果成人数多于一定数值则购买团体票合算。
35.要给参加国庆文艺会演的小演员们买表演服装。900元最多能买多少件这样的衣服?
解析:15件 【解析】 【详解】
900÷75=12(件) 12÷4=3(件) 12+3=15(件)
36.京沪高铁大约长1312千米,动车组列车从北京到上海大约4小时,而普通列车大约8小时,那么动车组列车比普通列车每小时快多少千米? 解析:1千米 【详解】 1312÷4-1312÷8 =328-1 =1(千米)
答:动车组列车比普通列车每小时快1千米
37.某风景区的门票价有单人票价和团体票价两种,单人票价:成人每人100元,儿童每人70元;团体票价:团体5人以上(包括5人)每人80元。 现在有成人4人,儿童6人要去游玩。算一算怎样买票最省钱?需要多少钱? 解析:5张团体票,5张儿童票最省钱。需要750元。 【解析】 【详解】
略
38.有一堆黄沙,先运走18吨,剩下的用7辆车运完,每车运6吨,这堆黄沙共有多少吨? 解析:60吨 【解析】 【详解】 18+6×7 =18+42 =60(吨)
答:这堆黄沙共有60吨。
39.小明的上山速度是每分钟80米,下山的速度是每分钟120米,如果他从山顶返回到山下用了1个小时 ,那么他从山下到达山顶用了几分钟? 解析:90分 【解析】 【详解】
1小时=60分钟 120×60=7200(千米) 7200÷80=90(分)
40.一部动画片的胶片长840米,3分钟放映了105米。照这样的速度,放映完这部动画片一共需要多少分钟? 解析:40分钟 【分析】
用105除以5计算出一分钟放映的长度,然后用840除以一分钟放映的长度即可。 【详解】 105÷5=21(米) 840÷21=40(分钟)
答:放映完这部动画片一共需要40分钟。 【点睛】
此题考查的是三位数除以两位数的除法计算,先计算出一分钟放映的长度是解答此题的关键。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.net 版权所有 湘ICP备2024080961号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务