科技名词定义
中文名称:锅炉 英文名称:boiler
定义:利用燃料燃烧释放的热能或其他热能加热水或其他工质,以生产规定参数(温度、压力)和品质的蒸汽、热水或其他工质的设备。
应用学科:电力(一级学科);锅炉(二级学科)
锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,而经过锅炉转换,向外输出具有一定热能的蒸汽、高温水或有机热载体。锅的原义指在火上加热的盛水容器,炉指燃烧燃料的场所,锅炉包括锅和炉两大部分。锅炉中产生的热水或蒸汽可直接为工业生产和人民生活提供所需热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,常简称为锅炉,多用于火电站、船舶、机车和工矿企业。 目录 锅炉概述 定义.................................................................................................................2 锅炉参数 蒸汽参数..........................................................................................................4 锅炉结构 锅炉整体的结构...............................................................................................5 锅炉分类..........................................................................................................................7 燃烧设备 简介..................................................................................................................9 安全常识 概述.................................................................................................................10 锅炉产业 简介..................................................................................................................11 工业锅炉节能改造技术.....................................................................................................12 锅炉燃料节能 节能环保助燃器节能法 简介.....................................................................14 燃油燃气锅炉燃烧的特点..................................................................................................14 环保锅炉 定义..................................................................................................................17 电站锅炉 简介..................................................................................................................17 废热锅炉 废热锅炉简介.................................................................................................18锅炉空气预热器着火原因分析 燃烧不完全.......................................................................19
锅炉概述
1
定义:《特种设备安全监察条例》所定义的锅炉是指利用各种燃料、电或者其他能源,
将所盛装的液体加热到一定的参数,并对外输出热能的设备。其范围规定为最高安全水位时存水容积大于或者等于30L的承压蒸汽锅炉;出口水压大于或者等于0.1MPa(表压),且额定功率大于或者等于0.1Mw的承压热水锅炉;有机热载体锅炉。
概念:锅炉的概念中还包括其安全附件、安全保护装置和与安全保护装置相关的设施。 分类:1、按用途分为:站锅炉、工业锅炉、船用锅炉、机车锅炉、注汽锅炉。 2、
按结构分为:火管锅炉、水管锅炉。 3、按锅炉出厂型式分为:快装锅炉、组装锅炉和散装锅炉。
发展简介
锅炉的发展分锅和炉两个方面。 18世纪上半叶,英国煤矿使用的蒸汽机,包括瓦特的初期蒸汽机在内,所用的蒸汽压力等于大气压力。18世纪后半叶改用高于大气压力的蒸汽。19世纪,常用的蒸汽压力提高到0.8兆帕左右。与此相适应,最早的蒸汽锅炉是一个盛水的大直径圆筒形立式锅壳,后来改用卧式锅壳,在锅壳下方砖砌炉体中烧火。 随着锅炉越做越大,为了增加受热面积,在锅壳中加装火筒,在火筒前端烧火,烟气从火筒后面出来,通过砖砌的烟道排向烟囱并对锅壳的外部加热,称为火筒锅炉。开始只装一只火筒,称为单火筒锅炉或康尼许锅炉,后来加到两个火筒,称为双火筒锅炉或兰开夏锅炉。
发展历史
1830年左右,在掌握了优质钢管的生产和胀管技术之后出现了火管锅炉。一些火管装在锅壳中,构成锅炉的主要受热面,火(烟气)在管内流过。在锅壳的存水线以下装上尽量多的火管,称为卧式外燃回火管锅炉。它的金属耗量较低,但需要很大的砌体。 19世纪中叶,出现了水管锅炉。锅炉受热面是锅壳外的水管,取代了锅壳本身和锅壳内的火筒、火管。锅炉的受热面积和蒸汽压力的增加不再受到锅壳直径的,有利于提高锅炉蒸发量和蒸汽压力。这种锅炉中的圆筒形锅壳遂改名为锅筒,或称为汽包。初期的水管锅炉只用直水管,直水管锅炉的压力和容量都受到。 二十世纪初期,汽轮机开始发展,它要求配以容量和蒸汽参数较高的锅炉。直水管锅炉已不能满足要求。随着制造工艺和水处理技术的发展,出现了弯水管式锅炉。开始是采用多锅筒式。随着水冷壁、过热器和省煤器的应用,以及锅筒内部汽、水分离元件的改进,锅筒数目逐渐减少,既节约了金属,又有利于提高锅炉的压力、温度、容量和效率。 辅助循环锅炉又称强制循环锅炉,它是在自然循环锅炉的基础上发展起来的。在下降管系统内加装循环泵,以加强蒸发受热面的水循环。直流锅炉中没有锅筒,给水由给水泵送入省煤器,经水冷壁和过热器等蒸发受热面,变成过热蒸汽送往汽轮机,各部分流动阻力全由给水泵来克服。 第二次世界大战以后,这两种型式的锅炉得到较快发展,因为当时发电机组要求高温高压和大容量。发展这两种锅炉的目的是缩小或不用锅筒,可以采用小直径管子作受热面,可以比较自由地布置
2
受热面。随着自动控制和水处理技术的进步,它们渐趋成熟。在超临界压力时,直流锅炉是唯一可以采用的一种锅炉,70年代最大的单台容量是27兆帕压力配1300兆瓦发电机组。后来又发展了由辅助循环锅炉和直流锅炉复合而成的复合循环锅炉。 在锅炉的发展过程中,燃料种类对炉膛和燃烧设备有很大的影响。因此,不但要求发展各种炉型来适应不同燃料的燃烧特点,而且还要提高燃烧效率以节约能源。此外,炉膛和燃烧设备的技术改进还要求尽量减少锅炉排烟中的污染物(硫氧化物和氮氧化物)
链带式链条炉排
早年的锅壳锅炉采用固定炉排,多燃用优质煤和木柴,加煤和除渣均用手工操作。直水管锅炉出现后开始采用机械化炉排,其中链条炉排得到了广泛的应用。炉排下送风从不分段的“统仓风”发展成分段送风。 早期炉膛低矮,燃烧效率低。后来人们认识到炉膛容积和结构在燃烧中的作用,将炉膛造高,并采用炉拱和二次风,从而提高了燃烧效率。 发电机组功率超过6兆瓦时,以上这些层燃炉的炉排尺寸太大,结构复杂,不易布置,所以20年代开始使用室燃炉,室燃炉燃烧煤粉和油。煤由磨煤机磨成煤粉后用燃烧器喷入炉膛燃烧,发电机组的容量遂不再受燃烧设备的。自第二次世界大战初起,电站锅炉几乎全部采用室燃炉。 早年制造的煤粉炉采用了U形火焰。燃烧器喷出的煤粉气流在炉膛中先下降,再转弯上升。后来又出现了前墙布置的旋流式燃烧器,火焰在炉膛中形成L形火炬。随着锅炉容量增大,旋流式燃烧器的数目也开始增加,可以布置在两侧墙,也可以布置在前后墙。1930年左右出现了布置在炉膛四角且大多成切圆燃烧方式的直流燃烧器。 第二次世界大战后,石油价廉,许多国家开始广泛采用燃油锅炉。燃油锅炉的自动化程度容易提高。70年代石油提价后,许多国家又重新转向利用煤炭资源。这时电站锅炉的容量也越来越大,要求燃烧设备不仅能燃烧完全,着火稳定,运行可靠,低负荷性能好,还必须减少排烟中的污染物质。
工作过程
锅炉是一种利用燃料燃烧后释放的热能或工业生产中的余热传递给容器内的水,使水达到所需要的温度(热水)或一定压力蒸汽的热力设备。它是由“锅”(即锅炉本体水压部分)、“炉”(即燃烧设备部分)、附件仪表及附属设备构成的一个完整体。 锅炉在“锅”与“炉”两部分同时进行,水进入锅炉以后,在汽水系统中锅炉受热面将吸收的热量传递给水,使水加热成一定温度和压力的热水或生成蒸汽,被引出应用。在燃烧设备部分,燃料燃烧不断放出热量,燃烧产生的高温烟气通过热的传播,将热量传递给锅炉受热面,而本身温度逐渐降低,最后由烟囱排出。
3
锅炉参数
是表示锅炉性能的主要指标,包括锅炉容量、蒸汽压力、蒸汽温度、给水温度等.锅炉容量可用额定蒸发量或最大连续蒸发量来表示。额定蒸发量是在规定的出口压力、温度和效率下,单位时间内连续生产的蒸汽量。最大连续蒸发量是在规定的出口压力、温度下,单位时间内能最大连续生产的蒸汽量。
蒸汽参数
包括锅炉的蒸汽压力和温度,通常是指过热器、再热器出口处的过热蒸汽压力和温度如没有过热器和再热器,即指锅炉出口处的饱和蒸汽压力和温度。给水温度是指省煤器的进水温度,无省煤器时即指锅筒进水温度。
自然循环锅炉简图
锅炉可按照不同的方法进行分类。锅炉按用途可分为工业锅炉、电站锅炉、船用锅炉和机车锅炉等;按锅炉出口压力可分为低压、中压、高压、超高压、亚临界压力、超临界压力等锅炉;锅炉按水和烟气的流动路径可分为火筒锅炉、火管锅炉和水管锅炉,其中火筒锅炉和火管锅炉又合称为锅壳锅炉;按循环方式可分为自然循环锅炉、辅助循环锅炉(即强制循环锅炉)、直流锅炉和复合循环锅炉;按燃烧方式,锅炉分为室燃炉、层燃炉和沸腾炉等。
水汽系统
在水汽系统方面,给水在加热器中加热到一定温度后,经给水管道进入省煤器,进一步加热以后送入锅筒,与锅水混合后沿下降管下行至水冷壁进口集箱。水在水冷壁管内吸收炉膛辐射热形成汽水混合物经上升管到达锅筒中,由汽水分离装置使水、汽分离。分离出来的饱和蒸汽由锅筒上部流往过热器,继续吸热成为一定温度的过热蒸汽(目前大多300MW、600MW机组蒸汽温度约为540℃左右),然后送往汽轮机。
燃烧和烟风系统
在燃烧和烟风系统方面,送风机将空气送入空气预热器加热到一定温度。在磨煤机中被磨成一定细度的煤粉,由来自空气预热器的一部分热空气携带经燃烧器喷入炉
4
膛。燃烧器喷出的煤粉与空气混合物在炉膛中与其余的热空气混合燃烧,放出大量热量。燃烧后的热烟气顺序流经炉膛、凝渣管束、过热器、省煤器和空气预热器后,再经过除尘装置,除去其中的飞灰,最后由引风机送往烟囱排向大气。
锅炉燃料
工业锅炉用燃料分为三类: 固体燃料—烟煤,无烟煤,褐煤,泥煤,油页岩,木屑,甘蔗渣,稻糠等; 液体燃料—重油,渣油,柴油,等; 气体燃料—天然气,人工燃气,液化石油气等。
锅炉结构
锅炉整体的结构
锅炉整体的结构包括锅炉本体(drum)、辅助设备和安全装置两大部分。锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。
燃稻壳蒸汽锅炉的内部结构图
炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上,进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料,喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧,并适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转,并强烈火烧的圆筒形炉膛称为旋风炉。
炉膛设计
炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时锅炉运行的经济性和可靠性都可能降低。
锅筒
是自然循环和多次强制循环锅炉中,接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒简体由优质厚钢板制成,是锅炉中最重要的部件之一。
5
锅筒主要功能
锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器和汽轮机中。
锅筒内部装置
包括汽水分离和蒸汽清洗装置、给水分配管、排污和加药设备等。其中汽水分离装置的作用是将从水冷壁来的饱和蒸汽与水分离开来,并尽量减少蒸汽中携带的细小水滴。中、低压锅炉常用挡板和缝隙挡板作为粗分离元件;中压以上的锅炉除广泛采用多种型式的旋风分离器进行粗分离外,还用百页窗、钢丝网或均汽板等进行进一步分离。锅筒上还装有水位表、安全阀等监测和保护设施。
设计考虑
为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉房的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。
LSS立式燃油(燃气)蒸汽锅炉
单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。
锅炉烟气
锅炉烟气中所含粉尘(包括飞灰和炭黑)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护规定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助高烟囱只能降低烟囱附近地区大气中污染物的浓度。
6
WD卧式静电除尘器
烟气除尘所使用的作用力有重力、离心力、惯性力附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。 二十世纪50年代以来,人们努力发展灰渣综合利用,化害为利。如用灰渣制造水泥、砖和混凝土骨料等建筑材料。70年代起又从粉煤灰中提取空心微珠,作为耐火保温等材料。 锅炉未来的发展将进一步提高锅炉和电站热效率;降低锅炉和电站的单位功率的设备造价;提高锅炉机组的运行灵活性和自动化水平;发展更多锅炉品种以适应不同的燃料;提高锅炉机组及其辅助设备的运行可靠性;减少对环境的污染。
锅炉分类
双锅筒水管锅
可以从不同角度出发对锅炉进行分类:
1、按烟气在锅炉流动的状况分
水管锅炉、锅壳锅炉(火管锅炉)、水火管组合式锅炉
2、按锅筒放置的方式分:
立式锅炉、卧式锅炉
3、按锅筒数量分:
单锅筒锅炉、双锅筒锅炉
7
4、按用途分:
生活锅炉、工业锅炉、电站锅炉、车船用锅炉
5、按介质分:
蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉
6、按安装方式分:
快装锅炉、组装锅炉、散装锅炉
7、按燃料分:
燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉 8、按水循环分:
自然循环、强制循环、直流锅炉、复合循环
9、按压力分:
常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉
10、按锅炉数量分:
单锅筒锅炉、双锅筒锅炉
11、按燃烧定在锅炉内部或外部分:
内燃式锅 炉、外燃式锅炉
12、按工质在蒸发系统的流动方式
可分为自然循环锅炉、强制循环锅炉、直流锅炉等。
13、按制造级别分类:
A级、B级、C级、D级、E级(按制造锅炉的压力分)
14、按出口蒸汽压力分为:
低压锅炉(P〈2.45MPa)、中压锅炉(3.8〈P〈5.8MPa)、高压锅炉(5.9〈P=12.6MPa)、超高压锅炉(12.7〈P=15.8MPa)、亚临界锅炉(15.9〈P=18.3MPa)、超临界锅炉(22.115〈P〈30MPa)、超超临界锅炉>30MPa。
具体详细的锅炉分类产品:
燃煤锅炉 热水锅炉 燃油锅炉 蒸汽锅炉 电热锅炉 环保锅炉 特种锅炉 燃气锅炉 水管锅炉 导热油锅炉 专用锅炉 双燃料锅炉 余热锅炉 常压锅炉 电锅炉 工业锅炉 热风锅炉 承压锅炉 真空锅炉 链条锅炉 家用锅炉 沼气锅炉 取暖锅炉 茶\\浴锅炉 电站锅炉 秸杆气化炉 焚烧炉 水煤浆锅炉 煤气发生炉 有机热载体锅炉 循环流化床锅炉。
8
燃烧设备简介
锅炉的燃烧方式有三种形式:层燃(火床燃烧)、室燃(悬浮燃烧)、沸腾燃烧。各种燃烧方式有其相应的燃烧设备。固定炉排、链条炉排、往复炉排、振动炉排等属于层燃式,适用于燃烧固体燃料。煤粉锅炉、燃油锅炉、燃气锅炉等属于室燃式,适用于粉状固体燃料,液体燃料和气体燃料。鼓泡流化床、循环流化床属于沸腾燃烧方式,适用于燃烧颗粒状固体燃料。抛煤机链条炉排,兼有层燃和室燃的燃烧方式,属于混合燃烧方式。
设备概述
1、 固定炉排:一种最古老、结构简单的层燃燃烧的设备,分两种单层炉排和双层炉排A单层炉排用铸铁制造,有板状和条状B双层炉排,内有上下两层炉排,上炉排由水冷却管组成的固定炉排,下炉排为普通铸铁的固定炉排。上炉排以上空间为风室,下炉排以下为灰坑,两层炉排之间为燃烧室。 2、 链条炉排:一种结构比较完善的燃烧设备。由于机械化程度高(加煤、清渣、除灰等均有机械完成),制造工艺成熟,运行稳定可靠,人工拨火能使燃料燃烧的更充分,燃烧率也较高,适用于大、中、小型工业锅炉。国产链条炉排按结构可分链带式、横梁式和鳞片式链条炉排。A链带式链条炉排属于轻型结构适用于额定蒸发量小于10t/Hd的蒸汽锅炉或相应容量的燃烧锅炉。B横梁式链条炉排是用刚性很强的横梁作支架,炉排片嵌于支架横梁的槽内,当主动轴上的链轮带动链条转动时横梁及其上的整付炉排随之移动。C鳞式链条炉排适用于额定蒸发量大于10t/Hd的蒸汽锅炉或相应容量的燃烧锅炉。 3、 往复炉排:一种利用炉排往复运动来实现给煤、除渣、拨火机械化的燃烧设备。往复炉排炉排按布置方式可分倾斜往复炉排和水平往复炉排A倾斜往复炉排为倾斜阶梯型,炉排有相间布置的活动炉排片和固定炉排片组成。B水平往复炉排是有固定炉排片和活动炉排片交错组成,炉排片相互搭接。 4、 振动炉排:一种由偏心块激振器、横梁、炉排片、拉杆、弹簧板、后密封装置、激振器电机、地脚螺钉、减震橡皮垫、下框架、前密封装置。测梁、固定支点等部件组成。具有结构简单,制造容易,重量轻、金属耗量少、设备投资省、燃烧条件好、炉排面积负荷高、煤种适应能力强优点在工业锅炉应用过。 5、 抛煤机: 按抛煤方式,抛煤机可分为风力抛煤机,机械抛煤机和机械-风力抛煤机三种。机械抛煤机兼有机械抛煤机和风力抛煤机的功能,它有两个主要部件构成:给煤部件和抛煤部件。 6、 沸腾燃烧流化床:一种介于固定床和悬浮床之间的气固两相床层。流化床根据不同的流化速度划分为鼓泡床、湍流床和快速床。A鼓泡流化床结构由给煤装置、布风装置、风室、灰渣溢流口、沸腾层、悬浮段等。特点对煤种适应行强、能强化转热,节省钢材,便于灰渣的综合利用,对环境污染较煤粉炉轻,锅炉本体结构简单。B循环流化床是新一代高效,低污染洁净煤燃烧技术。其特点是在于燃料及脱硫剂在流化床状态下经过多次循环,反复的进行低温燃烧和脱硫反应。C循环流化床和鼓泡流化床燃烧过程中最主要的区别在于1、循环流化床沸腾层内流化速度很高一般为3~10m/s最高可达
9
10m/s,鼓泡流化床锅炉的流化速度为1~3m/s。 7、 煤粉锅炉的燃烧设备:煤先经磨煤设备,然后喷入炉膛内燃烧,整个燃烧过程是在炉膛内呈悬浮状进行,这种锅炉称为煤粉炉。其特点能改善与空气的混合,加快点火盒和燃烧,煤种适用性广,适应于大中型锅炉。煤粉锅炉的燃烧设备有煤粉设备、制粉系统和煤粉燃烧器。 8、 燃油燃烧器:有喷油嘴和调风器组成;是将燃料油雾化,并于空气强烈混合后送入炉膛,使油气混合物在炉膛内呈悬浮状态的一种燃烧设备。燃油燃烧器是燃油锅炉的关键设备,按使用燃料种类可分轻质油燃烧器和重质油燃烧器,重油黏度大,在重油燃烧器内一般设置预热器。工业燃油锅炉大多配置轻质油燃烧器。 9、燃气燃烧器:它是燃气锅炉的最主要的燃烧设备。燃气燃烧器有扩散式燃烧器、大气式燃烧器和完全预混式燃烧器。
安全常识概述
锅炉是具有高温、高压的热能设备,是特种设备之一,在机关、事业企业及各行各业广泛使用,是危险而又特殊的设备。一旦发生事故,涉及公共安全,将会给国家和人民生命财产造成巨大损失。为了公共安全、人民生命和财产安全,依据《特种设备安全监察条例》,使用锅炉应注意以下全事项:
注意事项
1、锅炉出厂时应当附有“安全技术规范要求的设计文件、产品质量合格证明、安全及使用维修说明、监督检验证明(安全性能监督检验证书)”。 2、锅炉的安装、维修、改造。从事锅炉的安装、维修、改造的单位应当取得省级质量技术监督局颁发的特种设备安装维修资格证书,方可从事锅炉的安装、维修、改造。施工单位在施工前将拟进行安装、维修、改造情况书面告知直辖市或者辖区的特种设备安全监督管理部门,并将开工告知送当地县级质量技术监督局备案,告知后即可施工。 3、锅炉安装、维修、改造的验收。施工完毕后施工单位要向质量技术监督局特种设备检验所申报锅炉的水压试验和安装监检。合格后由质量技术监督局、特种设备检验所、县质量技术监督局参与整体验收。 4、锅炉的注册登记。锅炉验收后,使用单位必须按照《特种设备注册登记与使用管理规则》的规定,填写《锅炉(普查)注册登记表》,到质量技术监督局注册,并申领《特种设备安全使用登记证》。 5、锅炉的运行。锅炉运行必须由经培训合格,取得《特种设备作业人员证》的持证人员操作,使用中必须严格遵守操作规程和制度、六项记录。 6、锅炉的检验。锅炉每年进行一次定期检验,未经安全定期检验的锅炉不得使用。锅炉的安全附件安全阀每年定期检验一次,压力表每半年检定一次,未经定期检验的安全附件不得使用。 7、严禁将常压锅炉安装为承压锅炉使用。严禁使用水位计、安全阀、压力表三大安全附件不全的锅炉。
锅炉产业简介
中国的锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的
10
永恒产业,且在中国还是一个不断发展的产业。20世纪80年代以后,中国的经济发生了突飞猛进的变化,锅炉行业更加突出,全国锅炉制造企业增加近二分之一,并形成了开发研制一代又一代新产品的能力,产品的技术性能已接近发达国家水平。锅炉是经济发展时代不可缺少的商品,未来将如何发展,是非常值得研究的。 工业锅炉目前是中国主要的热能动力设备,工业锅炉多于电站锅炉,近年来,中国电站锅炉行业取得了快速的发展。其一,产量大幅增长,行业产能快速提升。目前,整个行业的产能已经超过8000万千瓦,不仅能满足国内电力工业建设的需要,而且还进入了国际市场。
发展收益
2005年全年中国中国锅炉及原动机制造业实现累计工业总产值154,846,232千元,比2004年同期增长37%;全年实现累计产品销售收入141,036,704千元,比2004年同期增长35.9%;全年实现累计利润总额9,696,312千元,比2004年同期增长39.3%。2006年1-12月,中国锅炉及原动机制造业实现累计工业总产值186,112,488千元,比上年同期增长22.93%;实现累计产品销售收入173,137,987千元,比上年同期增长26.78%,全年实现累计利润总额11,905,751千元,比上年同期增长了20.5%;2007年1-2月,中国锅炉及原动机制造业企业实现累计工业总产值29,052,541千元,比上年同期增长18.61%;实现累计产品销售收入23,884,869千元,比上年同期增长16.63%,实现累计利润总额1,419,368千元,比上年同期增长1.7%。 2005年1-12月,全国工业锅炉累计产量为150,397.90蒸发量吨,与2004年同期相比增长了9.59%;2006年1-12月,全国工业锅炉累计产量为192,378.44蒸发量吨,与2005年同期相比增长了11.26%;2007年1-2月,全国工业锅炉累计产量为29,540.58蒸发量吨,与2006年同期相比增长了31.7%。 2005年1-12月,全国电站锅炉累计产量为321,331.60蒸发量吨,与2004年同期相比增长了37.5%;2006年1-12月,全国电站锅炉累计产量为514,475.80蒸发量吨,与2005年同期相比增长了9.31%;2007年1-2月,全国电站锅炉累计产量为52,777.00蒸发量吨,与2005年同期相比增长了11.12%。 2006年,中国蒸汽、过热水锅炉进口数量为为9,372,901.00台/公斤,比2005年同期下降54.9%,用汇183,365,503.00美元,比2005年同期下降9%;2006年的出口数量为86,940,454.00台/公斤,比上年同期增长68.7%,创汇325,970,114.00美元,比上年同期增长80.9%; 2006年中国供暖锅炉进口数量为1,574,525.00台/公斤,比2005年同期增长2.8%,用汇65,961,186.00美元,比上年同期下降6%;2006年的出口数量为2,833,581.00台/公斤,比2005年同期增长20.4%,创汇10,832,594.00美元,比2005年同期增长11.74%。 中国锅炉制造业取得了长足的进步,目前已可以生产多种不同压力等级和容量的锅炉,已成为当今世界锅炉生产和使用最多的国家。同时,轻工纺织、能源化工、钢铁煤炭等锅炉相关产业的迅速发展给锅炉行业带来了广阔的发展空间和发展动力。
工业锅炉节能改造技术
① 加装燃油; 经燃油节能器处理之碳氢化合物,分子结构发生变化,细小分子
11
增多,分子间距离增大,燃料的粘度下降,结果使燃料油在燃烧前之雾化、细化程度大为提高,喷到燃烧室内在低氧条件下得到充分燃烧,因而燃烧设备之鼓风量可以减少15%至20%,避免烟道中带走之热量,烟道温度下降5℃至10℃。燃烧设备之燃油经节能器处理后,由于燃烧效率提高,故可节油4.87%至6.10%,并且明显看到火焰明亮耀眼,黑烟消失,炉膛清晰透明。彻底清除燃烧油咀之结焦现象,并防止再结焦。解除因燃料得不到充分燃烧而炉膛壁积残渣现象,达到环保节能效果。大大减少燃烧设备排放的废气对空气之污染,废气中一氧化碳(CO)、氧化氮(NOx)、碳氢化合物(HC)等有害成分大为下降,排出有害废气降低50%以上。同时,废气中的含尘量可降低30%—40%。安装位置:装在油泵和燃烧室或喷咀之间,环境温度不宜超过360℃。 ② 安装冷凝型燃气锅炉节能器; 燃气锅炉排烟中含有高达18%的水蒸气,其蕴含大量的潜热未被利用,排烟温度高,显热损失大。天然气燃烧后仍排放氮氧化物、少量二氧化硫等污染物。减少燃料消耗是降低成本的最佳途径,冷凝型燃气锅炉节能器可直接安装在现有锅炉烟道中,回收高温烟气中的能量,减少燃料消耗,经济效益十分明显,同时水蒸气的凝结吸收烟气中的氮氧化物,二氧化硫等污染物,降低污染物排放,具有重要的环境保护意义。 ③ 采用冷凝式余热回收锅炉技术; 传统锅炉中,排烟温度一般在160~250℃,烟气中的水蒸汽仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。众所周知,锅炉热效率是以燃料低位发热值计算所得,未考虑燃料高位发热值中汽化潜热的热损失。因此传统锅炉热效率一般只能达到87%~91%。而冷凝式余热回收锅炉,它把排烟温度降低到50~70℃,充分回收了烟气中的显热和水蒸汽的凝结潜热,提升了热效率;冷凝水还可以回收利用。 ④ 锅炉尾部采用热管余热回收技术; 余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。
导热管锅炉
超导热管是热管余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98%以上,这是任何一种普通热交换器无法达到的。热管余热回收装置体积小,只是普通热交换器的1/3。其工作原理如图所示:
12
左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。由若干根热管组成的余热回收装置,安装在锅炉烟口,将烟气中热量吸收并高速传导至另一端,使排烟温度降至接近露点而减少热量排放损失。加热后的清洁空气可烘干物料或补充到锅炉内循环使用。提高锅炉和工业窑炉的热效率,降低燃料消耗,达到节能的目的。 在工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个月回收,经济效益显著。 ⑤ 采用防垢、除垢技术; 通过采用锅炉除垢剂和电子防垢器,优化水汽循环系统,合理控制锅炉的排污率,从而减少水垢,提高锅炉热效率。 ⑥ 采用燃料添加剂技术; 在燃料中加入添加剂达到优化燃料,达到降低烟垢,提高热效率的目的; ⑦ 采用新燃料; 采用新型环保燃料油,达到降低燃油成本的目的。 ⑧ 采用富氧燃烧技术; 空气中氧气含量≤21%。工业锅炉的燃烧也是在这样空气下进行的工作。实践表明:当锅炉燃烧的气体氧气量达到25%以上时,节能高达20%;锅炉启动升温时间缩短1/2-2/3。而富氧是应用物理方法将空气中的氧气进行收集,使收集后气体中的富氧含量为25%-30%。富氧助燃是一种最新节能环保技术。近十几年来,随着环保要求的不断提高以及节约能源的需要,富氧燃烧作为一种新兴的燃烧技术在世界各国蓬勃发展,现在西方一些发达国家要求全部新增工业炉窑、工业锅炉不得用普通空气助燃,都得用富氧空气助燃。 ⑨ 采用旋流燃烧锅炉技术; 众所周知,传统锅炉存在着两大弊端,一是燃烧时有烟雾烟尘冒出,成为重要的污染源;二是煤渣燃烧不充分,能源浪费极为严重。采用纯无烟再节能旋流燃烧锅炉新技术与传统工业锅炉相比较,有着绝对的优势。它比手烧式锅炉节煤30%~35%,比链条式自动化锅炉节煤25%。由于纯无烟再节能技术使用了PID变频和ABM节电系统,比传统锅炉节电40%,挥发份可实现90%以上的燃烧和利用,而传统锅炉的挥发份的燃尽率只有78%左右,有22%的烟尘排向大气层,纯无烟再节能旋流燃烧技术使灰渣燃尽率达到了97%,而传统锅炉煤渣的燃尽率只有80%左右,正是由于这些原因,纯无烟再节能燃烧技术可使炉温从原来的1200℃提高到1500℃左右,提高了燃烧效率,节省了燃料,满足了客户的需求。 ⑩ 采用空气源热泵热水机组替换技术; 将现有的燃油(气)热水锅炉替换成空气源热泵热水机组;可节约能源消耗30%到50% ⑾燃煤锅炉改装成燃油(气)锅炉;
锅炉燃料节能 节能环保助燃器节能法简介
13
节能环保助燃器 集节能 节油 节气 环保 降低油品黏度 能力于一身的节能减排产品,代表了目前世界节能减排技术发展的顶峰 是节能减排的 技术原理:可以燃烧的物质大多含有碳和氢的成分,例如天然气、汽油、柴油、重油、乙醇等,以上燃油(气)的分子团颗粒大,无法充分燃烧,热能利用率不超过38%,因此燃烧过程中产生了大量的CO、NO、CH化合物及黑烟颗粒,严重影响着人类的健康。假如能够有技术使这些有害物质充分燃烧的话,它们不但不会危害人类生存的环境,还可以节省大量能源。 此项科技选用海底特殊土质,配合稀有金属、稀土元素用高科技手段精制成双波动生化材料,使其具有强力激活、强力震荡的特性,可以快速打散燃油(气)分子团,把原来大的分子团切割成众多个小分子,成为球形散射、排列整齐又极为活泼的小分子,这些极为活泼的小分子,在燃烧过程中可以快速充分的燃烧,功效奇妙,被为誉 “节能大王、环保尖兵”。 权威认证 CMA国家级的检测报告中华人民共和国国家技术专利。
燃油燃气锅炉燃烧的特点
一、燃油的燃烧特点 燃油是一种液体燃料,它的沸点总是低于着火点,所以燃油的燃烧总是在气态下进行的。燃油经雾化后的油粒喷进炉膛以后,被炉内高温烟气所加热,进行气化,气化后的油气和周围空气中的氧相遇,形成火焰。燃烧产生的热量有一部分传给油粒,使油粒不断气化和燃烧,直到燃烬。油粒直径越小,油粒的燃烧愈快。同样,油粒燃烧所需的氧能及时地供给,油粒的燃烧也愈快。因此要强化油的燃烧必须做到以下几点: 1、提高雾化质量,减小油粒直径; 2、增大空气与油粒的相对速度; 3、合理配风。 二、燃气的燃烧特点 燃用发热量高的燃气,空气用量大,要使燃气能充分燃烧,需要大量的空气与之混合。燃气的燃烧过程没有燃油的雾化过程与气化过程。燃气与空气的混合方式,对燃烧的强度、火焰长度和火焰温度都有很大的影响。根据混合方式不同,燃气的燃烧方法可分为三种: 1、扩散燃烧 此种燃烧方法即不预先混合,而是在燃气喷嘴口相互扩散,并燃烧。其优点烧烧稳定,燃具结构简单,但火焰较长,易产生不完全燃烧,使受热面积碳化。 2、预混部分空气燃烧 此种燃烧方式即燃烧前预先将一部分空气与燃气混合(一次空气过剩系数在0.2-0.8之间),然后进行燃烧。其优点是燃烧火焰清晰,燃烧强化,热效率高。但燃烧不稳定,对一次空气的控制及燃烧成分要求较高。燃气燃烧器一般多用此种燃烧方式。 3、无焰燃烧 此种燃烧方式即燃气所需空气在燃烧之前已与燃气均匀混合。一次空气过剩系数等于燃料完全燃烧时的空气过剩系数,在燃烧过程中不需要从周围空气中取得氧气。当燃气与空气混合物达到燃烧区后能在瞬间燃烧完毕。 三、燃烧器 燃油气锅炉的燃烧器是锅炉的关键部件,其选型与锅炉是否适配、燃烧的控制与调节非常重要,这部分的内容在以后的专题中将要着重讲解。 燃油燃气锅炉结构特点及类型 1、燃油燃气锅炉结构特点 燃油燃气锅炉不同于燃煤锅炉,它需要使用燃烧器将燃料喷入锅炉炉膛,采用火室燃烧而无须使用炉排设施。由于燃油燃气锅炉燃烧后均不产生燃料灰渣,故燃油燃气锅炉无须排渣设施。喷入炉内的油气如果与空气在一定范围内混合或熄灭,就容易爆炸。因此燃油燃气锅炉均需采用自动化的燃烧与控制系统。燃
14
油燃气锅炉结构紧凑,小型的锅炉本体及其通风、给水、控制与辅助设备均设置在一个底盘上,大中型的也可组装出厂。现将燃油燃气锅炉的主要受压元件与连接方式分述如下: <1>、火管锅炉的主要受压元件:锅壳、管板、炉胆、烟管; <2>、水管锅炉的主要受压元件:锅筒(汽包)、水冷壁、锅炉管束、蛇形管、集箱; <3>、燃油燃气锅炉的主要受压元件的连接方式:主要为焊接,部分也可胀接。 2、燃油燃气锅炉类型 <1>、卧式内燃火管锅炉 (1)定义 锅壳纵向轴平等于地面且燃烧室包含在本体里面的火管锅炉称卧式内燃火管锅炉。 (2)卧式内燃火管锅炉的特点 炉胆是该类型锅炉的燃烧室。燃烧器喷嘴置于炉胆前部,燃烧产生的高温烟气延伸到后部,离开炉胆后折返空间(回燃室),近返后进入第二回程(烟管),如折返一次则称二回程,如折返二次则称三回程锅炉,以此类推,一般折返次数不超过四次,最常见的是三回程锅炉。此类型锅炉根据炉胆后部烟气折返空间的结构型式可分为干背式锅炉和全湿背式锅炉(干背式锅炉和全湿背式锅炉的结构简图见《蒸汽锅炉安全技术监察规程》第17页图4-1)。干背式锅炉的烟气折返空间是由耐火材料转围成的;全湿背式锅炉的烟气折返空间是由浸在水中的回燃室组成的。另外有一种中心回燃锅炉:即炉胆后壁密封在锅壳里面,烟气碰到后由炉胆四周内壁折回前部。此类锅炉也可视为全湿背式锅炉。干背式锅炉虽然结构简单,但炉胆后部的耐火材料容易损坏,且后管板经常受到高温烟气的直接冲刷,温差较大,所以干背式锅炉属于淘汰型,目前基本上很少有厂家生产;全湿背式锅炉虽然结构复杂一点,但避免了折返空间的烟气密封问题,更适合于微正压燃烧,所以目前大多数厂家的此种类型的锅炉均为全湿背式。 (3)卧式内燃火管锅炉的技术 卧式内燃火管锅炉的锅壳和炉胆都是圆筒形元件,为保证安全运行,它们都必须有足够的强度和钢度。由于圆筒形元件的壁厚与筒体直径和压力的乘积成正比,所以无论锅壳或是炉胆,直径的增大和压力的提高,都意味着壁厚的增加。通过技术经济比较,若锅壳直径太大,其制造成本会超过同等容量和压力的水管锅炉,是不经济的;对于炉胆,若壁厚超过21-22mm,则将导致热应力过大,危及锅炉运行安全。因此,燃油燃气卧式内燃火管锅炉的工作压力一般都不超过2.0MPa;锅炉的出力,单炉胆锅炉一般不超过15t/h;双炉胆锅炉一般不超过30t/h。 <2>、水管锅炉 当锅炉容量≥30 t/h时,水管锅炉的各项指标明显优于火管锅炉,唯一需要注意的是燃油气的燃烧特性要求微正压通风,所以对炉墙的强度和密封要求都很高。水管锅炉的主要型式有D型、A型和O型。三种型式的共同特点是:卧式布置,燃烧器水平安装,操作检修方便,宽高度尺寸较小,长度伸缩性较大,适合于锅筒系列化生产。其中D型锅炉是双锅筒纵置式,右(左)侧为水冷壁,左(右)是上锅筒之间的对流管束,根据需要可布置过热器或省煤器;O型也是双锅筒纵置式,上锅筒长,下锅筒短,前部炉膛两侧的水冷壁管在下部弯向对方并与其下集箱相连,燃烧器前部布置;A型单锅筒纵置式,炉膛和对流管束均由上锅筒和两侧下集箱之间的管子构成,前部布置燃烧器,本锅炉尾部可设过滤器。 <3>、小型立式锅炉 锅壳纵向轴线垂直于地面的锅炉为立式锅炉。其燃烧器一般布置在炉顶。中心是一个炉胆,烟气在炉底折返向上流动,冲刷翘片管形成的夹套中被加热,在上部分离出蒸汽;燃烧器也可布置在下部侧面,
15
在炉胆中燃烧后向上冲刷烟管,水在烟管外锅壳里被加热。 3、锅炉运到用户现场后燃烧的重新调整 各种规格与型号的常规锅炉产品,如果燃烧有条件,基本上都在厂内进行过燃烧调试。锅炉运输到用户之前,为什么需要重新调整?主要有以下几个因素的影响,所以需要调整。 <1>、环境因素 锅炉在交付给用户后,用户通常是将锅炉放置在锅炉房内,并且建筑有较高的排烟烟囱。这样燃烧就会因为外界环境的变化,需要重新调整燃烧器的油风匹配。其次,由于用户所处的地理环境海拔原因,燃烧也需要进行实地调整,以保证锅炉能够达到设计负荷要求。 <2>、燃油因素 用户在购买到锅炉后,必须严格的燃油要求。而且按照锅炉的使用和外界环境温度,选择符合国家标准的燃油油料。不符合的燃油往往不能正常的燃烧,甚至会损害燃烧设备的寿命;燃烧油的标号不同,燃烧也需要重新调整。 <3>、控制与保护装置的调整 锅炉在正式投入作用之前,由于控制与保护装置的设置参数与用户的实际需求,往往有不一致的地方。而且锅炉经过运输,本体及配件可能需要进行重新调整。 4、燃油燃气锅炉的选择原则 燃油燃气锅炉的选型除按技术与经济相结合的原则来考虑外,还应综合考虑业主的意图,并结合环保、消防、劳动部门的意见,以安全、环保为主。下面列出几条需注意的选用原则: <1>、应自动化运行,安全有保障,有可靠的自控和保护装置。 <2>、选择信誉好,售后服务好的锅炉产品厂家。 <3>、锅炉性能需与用户用热用汽特性一致,适应性好。用户负荷有较大变化时,敏感性要高,追踪性要快,压力要稳定。 <4>、视锅炉布置位置及要求,选择立式或卧式锅炉。 <5>、视用户供汽时间要求,可选择快速锅炉,一般在3-5分钟可体供汽。 <6>、要求用户提供负荷曲线,以便核实所选锅炉的出力和性能。 5、燃油燃气锅炉的发展趋势 随着我国改革开放的不断深化,全国各地经济建设的迅速发展,城市高层民用建筑的快速崛起,国家对环保工作提出更高要求,油气资源的大力开发,燃油燃气锅炉应用逐年上升。综观最近几年燃油燃气锅炉的发展炮,发展趋势如下: <1>、锅炉的高效率。 <2>、结构简单。 <3>、使用简易配套的辅机。 <4>、全智能化自动控制并配有多级保护系统。 <5>、配备燃烧器(送风机)和烟道消音系统,降低锅炉运行的噪音。 <6>、应装备自动加药装置,水处理装置。 <7>、配备其它监测和装置,至少应保证锅炉24小时无监督安全运行。
环保锅炉定义
顾名思义,环保锅炉所必需的燃料是水煤浆。水煤浆是一种新型清洁燃料,是燃料家族的新成员。它以煤炭为主料,以水、化学添加剂为辅料组成,经过专用设备的研磨、细化,并充分与水混和均匀,在化学添加剂的作用下,制出均匀、稳定的水煤浆。
介绍
传统燃煤锅炉中,煤炭燃料是固态燃烧方式,而环保锅炉性的将之改变为高压流态雾化喷燃方式。这种类似燃油燃烧的方式,充分整合了液态燃料、空气、水种
16
种燃烧因素的化学物理特点,实际效果上促进了燃料燃尽率的大幅提高(相对燃煤锅炉)。依据液态煤基燃料燃烧机理,锅炉整个系统进行优化重置设计,既大大提高了锅炉最终的热效率,又减少了主要污染物的气体排放量,从而,环保锅炉充分实现了环保又节能的社会效应和工业效益。
电站锅炉简介
电站锅炉,通俗来讲就是电厂用来发电的锅炉。一般容量较大,现在主力机组为300MW。 电站锅炉主要有两类:煤粉炉和循环流化床锅炉。 循环流化床锅炉(简称CFB),其燃烧机理是把固态的燃料流体化,使它具有液体的流动性质促成燃烧。可以加石灰或煤矸石除硫,比较环保。循环流化床锅炉燃烧的是煤颗粒对锅炉的磨损比较严重,维修费用一般都挺高.。 电站煤粉炉,只是把煤磨细成煤粉,然后用空气吹入炉膛燃烧。燃烧的是粉末对锅炉磨损较小,比循环流化床锅炉好控制,给锅炉加压或着降压的时候它的反应时间比循环流化床快。 电站锅炉的“水冷壁”、“过热器管”、“再热器管”、“省煤器管”的高温腐蚀和磨损,是造成管道泄露的主要原因,也是常见的技术问题,它给电厂的安全运行带来很大威胁,常常导致事故的发生。电厂简称其为电站锅炉“四管”。 燃煤锅炉是指燃料燃烧的煤,煤炭热量经转化后,产生蒸汽或者变成热水,但并不是所有的热量全部有效转化,有一部分无工消耗,这样就存在效率问题,一般大写的锅炉效率高些,60——80%之间。 选用注意事项:本系列锅炉适用于最冷月平均气温不低于-10℃的地区。气温过低时使用,应考虑管路及水槽的结冰问题,特别是冬季间断运行过程中,水泵直接山塔的水槽内吸水的循环系统,更应该考虑避免冻结的问题,必要时水槽内加电热管。
分类
1燃煤锅炉分类 燃煤锅炉有多种类型,可按燃烧方式、除渣方式以及结构安装方式分类。 按燃烧方式可分为4种。①层燃炉:原煤经破碎成粒径为25~40毫米的碎块后,用炉前煤斗的煤闸板或播煤机平铺在链条炉排上作层状燃烧。层燃炉优点是附属设备少,制造、安装简便,易于运行操作。适用于中小容量锅炉。这种锅炉的缺点为煤的燃烧不完全,炉渣和飞灰中可燃物含量多,锅炉效率一般为75~85%。通常要烧较好的煤。②室燃炉:又称煤粉炉。原煤经筛选、破碎和研磨成大部分粒径小于0.1毫米的煤粉后,经燃烧器喷入炉膛作悬浮状燃烧。煤粉喷入炉膛后能很快着火,烟气能达到1500℃左右的高温。但煤粉和周围气体间的相对运动很微弱,煤粉在较大的炉膛内停留约2~3秒才能基本上烧完,故煤粉炉的炉膛容积常比同蒸发量的层燃炉炉膛约大一倍。这种锅炉的优点为能燃烧各种煤且燃烧较完全,所以锅炉容量可做得很大,适用于大、中型及特大型锅炉。锅炉效率一般可达90~92%。其缺点为附属机械多,自动化水平要求高,锅炉给水须经过处理,基建投资大。③旋风炉:将粒径小于10毫米的碎煤粒或粗煤粉先在前置式旋风筒内作旋风状燃烧,所产生的高温烟气再进入主炉膛(冷却室)内进行辐射换热。旋风炉的优点为炉膛容积热强度高,炉子的尺寸小;过剩空气系数小(仅为1.05~1.10),可以降低排烟热的损失;燃用粗煤粉
17
可简化制粉设备;排渣率高,飞灰浓度低,提高烟气速度加强对流受热面的传热。其缺点是适用煤种受灰熔点和渣的粘滞性的;锅炉负荷变动范围较小;不能快速启停;由于炉内温度可达2000℃左右,有害气体NOx排放量大,对大气污染较严重。④沸腾燃烧炉:即沸腾燃烧锅炉。锅炉行业网站。
废热锅炉简介
废热锅炉也叫余热锅炉,就是利用各种装置产生的高温废气来加热水,产生蒸汽或产生热水(即蒸汽余热锅炉、热水余热锅炉),再利用所产生的蒸汽或热水,达到余热再利用的目的。 余热锅炉属于节能环保项目,它降低了废物的排放量,大大减轻了环境污染,同时对热量进行了一定的回收。 利用工业生产中原来要排出去的高温余热来加热的锅炉,接下来可以用来发电,也可用来供暧 燃煤锅炉是指燃料燃烧的煤,煤炭热量经转化后,产生蒸汽或者变成热水,但并不是所有的热量全部有效转化,有一部分无工消耗,这样就存在效率问题,一般大写的锅炉效率高些,60——80%之间。燃煤锅炉主要由煤粉制备系统、燃烧器、受热面、空气预热器等主要部分组成。
锅炉本体的结构类型
电站锅炉的本体结构类型主要取决于燃料特性、锅炉容量和蒸汽参数等因素。常见的有倒U型、塔型和箱型。 倒 U型 适用于各种容量的锅炉和燃料,故应用广泛。锅炉的高度比其他炉型低,受热面布置较方便,风机和除尘设备都可放在地面上,但占地面积较大。图1中的锅炉本体便是倒U型的一个实例。 塔型 适用于燃用多灰烟煤和褐煤的锅炉,无转弯烟道,可减轻飞灰对受热面的局部磨损,且占地面积较小。但炉体高,安装和检修较复杂。 箱型 适用于容量较大的燃油和燃气锅炉。炉膛以上的烟道分为两部分:一部分直接接在炉膛出口,烟气上流;另一部分烟气下流。其优点是结构紧凑,占地面积较小,锅炉与汽轮机的连接较方便。缺点是制造工艺较复杂,检修困难。
锅炉空气预热器着火原因分析
1、燃烧不完全
由燃料组分过重而导致燃料燃烧不完全,使GAH挟热面上积聚可燃物。 锅炉以外购渣油、裂化残油和抽余C4燃料为多,它们的组分较重,黏度较高,自燃点低,燃烧时易析碳,蒸汽雾化燃料时破碎能力也很差,大分子油滴含量高,油喷嘴易堵塞,因此经常影响燃油的雾化质量和燃烧效果。运行时如果燃烧调整不当,风量不足或配风不合理以及工艺工况波动时,就会来不及使炭黑燃烧完全而产生黑烟。炉瞠内没有完全燃烧的油粒被烟气带到锅炉尾部GAH换热面上开始沉积,这也就为二次燃烧提供了物质基础n从最近这次停车后仪表人员对火焰监测器的检查结果看,并没有查出问题。经验分析认为,这次事故基本上是燃料燃烧不好时产生大量黑烟,黑
18
烟进入或遮盖住了监测器探头,产生假信号报警停车所致。 另外,在锅炉频繁启停过程中,由于炉瞠燃烧工况不良,燃料不易燃尽,在烟气流速较低时,极易造成大量未燃尽的可燃物沉积;锅炉低负荷运行时间过长,燃烧不稳定,烟速偏低,未燃尽的可燃物易在波纹板上沉积;以往事故教训和经验还证实:空气预热器转子堵灰、磨损后漏风、烟道尾部过剩空气系数或氧含量控制过低等都能导致燃料因缺氧而燃烧不完全。目前,该公司A、B炉空气预热器转子都有不同程度的漏风隐患;1997年以后,锅炉因各种原因始终不能满负荷运行,烟气流速低;有时为提高锅炉热效率而一味去降低尾部过剩空气量。这些都为空气预热器二次燃烧留下了隐患。
2、频繁吹扫点火
频繁吹扫点火为锅炉沉积可燃物着火提供了充足的复。 锅炉点火过程中烟气流速低,燃烧系统空间的含氧量又较正常运行时高得多,像B炉当时曾连续几次点火吹扫,因此便使尚具余热的未燃尽可燃物因具备了充足的过剩氧量而复燃。
锅炉基础知识
几个小常识:
水的状态: 水蒸气最高温度
气体的压强:标准大气压(QNE):是指在标准大气条件下海平面的气压。其值为1013.2百帕(或760毫米汞柱高或29.92英寸汞柱高)。
烟 雾 水蒸汽 工质: 工况:
第一节 循环流化床锅炉的概念
循环流化床锅炉是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡
19
床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床锅炉的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。
一. 流态化:
当固体颗粒中有流体通过时,随着流体速度逐渐增大,固体颗粒开始运动,且固体颗粒之间的摩擦力也越来越大,当流速达到一定值时,固体颗粒之间的摩擦力与它们的重力相等,每个颗粒可以自由运动,所有固体颗粒表现出类似流体状态的现象,这种现象称为流态化。
对于液固流态化的固体颗粒来说,颗粒均匀地分布于床层中,称为“散式”流态化。而对于气固流态化的固体颗粒来说,气体并不均匀地流过床层,固体颗粒分成群体作紊流运动,床层中的空隙率随位置和时间的不同而变化,这种流态化称为“聚式”流态化。循环流化床锅炉属于“聚式”流态化。
固体颗粒(床料)、流体(流化风)以及完成流态化过程的设备称为流化床。二. 临界流化速度
1. 对于由均匀粒度的颗粒组成的床层中,在固定床通过的气体流速很低时,随着风速的增加,床层压降成正比例增加,并且当风速达到一定值时,床层压降达到最大值,该值略大于床层静压,如果继续增加风速,固定床会突然解锁,床层压降降至床层的静压。如果床层是由宽筛分颗粒组成的话,其特性为:在大颗粒尚未运动前,床内的小颗粒已经部分流化,床层从固定床转变为流化床的解锁现象并不明显,而往往会出现分层流化的现象。颗粒床层从静止状态转变为流态化进所需的最低速度,称为临界流化速度。随着风速的进一步增大,床层压降几乎不变。循环流化床锅炉一般的流化风速是2-3倍的临界流化速度。
20
2. 影响临界流化速度的因素: (1)料层厚度对临界流速影响不大。
(2)料层的当量平均料径增大则临界流速增加。 (3)固体颗粒密度增加时临界流速增加。
(3)流体的运动粘度增大时临界流速减小:如床温增高时,临界流速减小。床温与临界流速的关系如图所示。
济锅440t/h循环流化床锅炉汽水系统简介
1、给水流程 锅炉给水首先进入省煤器进口集箱,经过水平布置的三组省煤器,汇集到省煤器的出口集箱,经悬吊管、悬吊管出口集箱引入汽包水空间。在启动阶段,用省煤器再循环系统保护省煤器。其中减温水由给水操纵台前引出。
锅炉采用自然循环,汽包内的锅水通过8根集中下降管进入炉膛膜式水冷壁和水冷蒸发屏及料腿水冷套的进口集箱,经炉膛膜式水冷壁和水冷蒸发屏及水冷套加热后成为汽水混合物,随后经上集箱、汽水引出管引入汽包进行汽水分离。被分离出来的水进入汽包水空间,进行再循环。
2、主蒸汽和再热蒸汽流程:
主蒸汽由锅筒引出后依次经过:包敷过热器、低温过热器、Ⅰ级减温器、屏式过热器、Ⅱ级减温器、高温过热器。为了克服由于烟气侧偏流引起的热偏差,沿蒸汽流程左右侧蒸汽进行了两次交叉混合。
再热器为两级,低温再热器布置于尾部竖井烟道内,高温再热器以屏的型式布置在炉膛内,低温再热器进口设有事故喷水减温器,两级再热器之间布置有喷水减温器。在锅炉启动阶段,汽轮机的旁路系统还没有投入时,炉内屏式再热器处于干烧状态。此时应严格控制锅炉负荷和屏式再热器壁温<700℃。
21
3、为了保证锅炉运行,锅炉汽水系统还布置了有排污、疏水、加药、取样等管路系统,并配有相应的阀门和管道。
CFB锅炉结焦的现象
1.床温急剧上升 2.氧量指示下降甚至为0 3.一次风机电流、风量减小 4.炉膛负压增大 5.引风机电流减小
6.床料不流化,燃烧在料层表面进行
7.一个床压测点或几个床压测点不是运行中的波动数值,而是静止的 8.一个床温测点或几个温压测点比正常床温均值低100~200℃ 9.在床压正常的情况下,出现水冷风室压力升高
CFB锅炉结焦的原因
1.煤的灰熔点低
2.燃烧时监视或调整不当造成超温
3.一次风量过小(投煤后),低于临界流化风量 4.点火升压过程中,煤加的太快,过多或加煤后没有加风 5.煤种、煤质变化幅度过大
6.压火操作不当或压火、启动过程中操作缓慢,造成物料流化不起来而局部结焦 7.耐火砖大面积脱落或炉膛内有异物,破坏床料流化 8.回送装置返料不正常或堵塞 9.负荷增加过快,操作不当 10.床温表不准,操作人员误操作 11.风帽损坏,渣漏至风箱,造成布风不均
22
12.放渣过多.造成料层太薄 13.未及时放渣,料层太厚 14.锅炉启动前风帽堵塞过多
15.给煤粒度普遍大,使密相区燃烧分额过大 16.锅炉运行中,长时间风煤配比不当 济锅440t/h1、锅筒及内部装置
锅筒内径φ1600 mm,壁厚95 mm,材料为BHW35,总长约17000 mm,重约72吨,锅筒内部装置重5吨,总重约77吨。
锅筒正常水位在锅筒中心线下180 mm,最高最低安全水位±50 mm。
锅筒内部装置由旋风分离器、给水清洗装置、顶部均流孔板、连续排污管、加药管等组成。 由旋风分离器出来的蒸汽穿过上部清洗孔板(由省煤器来的50%的清洁水,在清洗孔板上保持30 mm厚的水层,蒸汽流经清水层其中部分盐溶入清洗水中),穿越锅筒顶部的多孔板,然后由8根蒸汽引出管到过热器系统。
在大直径下降管进口处布置了十字挡板,改善下降管带汽及抽空现象。锅筒上除布置必需的管座外,还布置了再循环管座,吹灰管座,备用管座。 2、水冷系统
炉膛由膜式水冷壁组成,保证了炉膛的严密性。炉膛横截面为15200×7360 mm,炉顶水冷标高34600 mm,膜式水冷壁由φ60×7锅炉管和6×20 mm扁钢焊制而成,管节距为80.5 mm。由吊杆将炉膛水冷壁悬挂于钢架上框架上。 水冷壁集箱采用φ273×42和φ273×40锅炉管。
水冷壁下部及炉膛出口位置焊有销钉用以固定高强度耐高温防磨耐火材料。保证该区域水冷
循环流化床锅炉特点(一)
23
壁安全可靠地工作。
φ83×12水冷壁向下弯制构成水冷风室,水冷布风板。 水冷壁上设置测量孔、检修孔、观察孔等。 水冷壁上的最低点设置放水排污阀。
水冷系统是由6根φ426×40大直径下降管分为68根供水支管联接到水冷下集箱,2根φ325×32大直径下降管分为14根供水支管联接到水冷屏下集箱和水冷套下集箱,及根汽水引出管组成6个上升回路的循环系统。
6个回路分前墙1个,左右侧墙各1个,后墙1个,水冷屏2个。 3、过热器及其蒸汽调温
过热器由屏式过热器、高温过热器、低温过热器、包敷过热器等组成。其蒸汽流程如下:饱和蒸汽从锅筒由导管引入尾部烟道左右侧包墙上集箱,依次流经两侧包墙、前后包墙、进入前后包墙上集箱,然后再依次通过低温过热器、第一级喷水减温器、屏式过热器、第二级喷水减温器和高温过热器。其中有两次过热蒸汽连接管道左右交叉,改善了在烟道宽度上由于烟气温度不均匀而引起过热蒸汽温度的偏差,以保证蒸汽温度的均匀性。采用辐射式及对流过热器,既提高传热效果,节省金属,又改善了当锅炉工况变动时过热汽温的调节性能。减温器的两级布置,增加了蒸汽温度调节的灵敏度。
屏式过热器采用φ51×7mm的管子,管节距为70mm,其下部敷设防磨可塑料。其中的4片屏式过热器采用上行程,另外4片则采用下行程。
高温过热器和低温过热器两组蛇形管为纯对流型,顺列布置。高温过热器采用三管圈,由φ38×6mm管弯制,管节距为100mm,高温过热器的最上面12排管采用SA-213-T91。低温过热器亦采用三管圈,由φ38×5mm管弯制。为防止磨损,除选用较低的烟速外,高温过热器和低温过热器的每一个管组的前两排管子均加装防磨盖板,并在过热器弯头及穿墙部位加装防磨罩。
24
过热蒸汽调温采用两级喷水减温,两级减温器分别位于低温过热器出口和高温过热器进口位置,第一级减温器(低温过热器后)设计喷水量为17.35t/h,第二级减温器(高温过热器前)设计喷水量为7.76t/h,由锅炉给水泵处提供减温器的喷水。
高温过热器和低温过热器采用省煤器悬吊管进行悬吊,屏式过热器则悬吊在炉顶的屏式过热器集箱上。
4、再热器及其蒸汽调温
再热器分为两级,低温再热器布置在尾部竖井烟道内,高温再热器以屏的型式布置在炉膛内,两级再热器之间设有喷水减温器,其设计喷水量为9.09t/h,在低温再热器的进口装有事故喷水减温器,用于紧急状况下控制再热器进口的蒸汽温度,事故喷水量为12t/h,由锅炉给水泵抽头提供减温器的喷水。
屏式再热器采用φ54×5mm的管子,管间节距为70mm,其下部敷设防磨可塑料。 低温再热器采用四管圈,由φ51×4mm管弯制。为防止磨损,除选用较低的烟速外,其每一个管组的前两排管子均加装防磨盖板,并在再热器弯头及穿墙部位加装防磨罩。
低温再热器采用省煤器悬吊管进行悬吊,屏式再热器则悬吊在炉顶的屏式再热器集箱上 5、省煤器
省煤器布置在低温再热器下部区域,由省煤器悬吊管进行悬吊。整个省煤器分成三个管组,采用光管型式,顺列布置,管规格为φ42×6mm,节距100 mm。每组省煤器的前两排管子均加装防磨盖板,并在省煤器弯头及穿墙部位加装防磨罩。省煤器进出口集箱采用φ273×28。
省煤器易发生局部磨损处加装定位防磨板。 6、空气预热器
空气预热器为管式,卧式结构,三行程,顺排布置,空气与烟气成逆流。烟气在管间流
25
动,空气在管内流动。一、二次风的冷风风道分别从炉后方向引入,热风风道从炉前方向引出。空气预热器的各段管箱的管规格均为φ60×3mm,每组空预器的前三排管子加装防磨套管。空气分别由二次风机和一次风机送入。
空气预热器由预热器管箱、连通罩、框架、护板、膨胀节、人孔装置、防磨装置、紧固件组成。
每组空气预热器都设置吊钩,方便运输、安装。
空气预热器设计的烟气流速和空气流速都控制在合理的范围内,提高了空气预热器的换热效率,避免了空气预热器烟气侧积灰。
设计的空预器膨胀节保证了管箱的自由膨胀和空气侧的密封,保证了烟道的密封,从而避免了空气向烟道的漏风。使锅炉在较低过量空气系数下运行,提高了锅炉性能。
进空预器冷风采用暖风机加热,冷风温度20℃。
7、刚性梁、膨胀中心和导向装置
膜式水冷壁外侧设置数层刚性梁,保证了整个炉膛有足够的刚性。刚性梁计算相对挠度f/h=1/200。
全炉设膨胀中心作为膨胀补偿。炉膛膨胀中心位于其中心线,分离器膨胀中心位于其中心线,尾部竖井膨胀中心位于其前墙。炉膛与分离器的连接烟道及分离器与尾部竖井进口连接烟道都设置性能优异的非金属膨胀节。解决由热位移引起的密封问题。
在锅炉18米、25.5米、35.5米标高处,布置止晃装置和导向装置,将地震荷载及风荷载传递给锅炉构架,使锅炉满足露天布置和抗震的要求。
8、锅炉给煤
破碎到一定粒度的燃煤经给煤机进入布置在前墙的六个φ426×10mm给煤管,借助自
26
身重力和引入的一次风播煤风,在布风板上方1800mm处进入炉膛。为防止给煤管内堵煤,在给煤管的转弯处和给煤管下部出口处均引入一次风热风。输煤量按仅用三条管路给煤时锅炉亦能满负荷运行考虑。由于给煤管内为正压,给煤机必须有很好的密封性,用二次风机出口冷风来维持给煤机内部的密封,密封压力5000Pa。
9、锅炉配风
本锅炉燃烧系统采用两级配风,一次风经空气预热器升温至229℃后,进入水冷风室,经过布风板上的风帽进入炉膛。二次风经空气预热器也升温至229℃,进入二次风箱,经若干根支管引入炉膛。一、二次风风量比为0.56:0.44,布风板下的一次风室风压大约为15500Pa,二次风箱内的风压大约为10000Pa。运行中可以适当调节一、二次风风量的配比。
从一次风预热器出口风道上引出一只风管,风量为16200 Nm3/h,做为给煤机的播煤风,在炉前分成12个支管,分别接到炉前6个进煤管的特定部位,在进煤口的下部形成气垫使煤能够顺利地进入炉膛。从二次风机出口引出一只风管,风量为5400 Nm3/h,在炉前分成6个支管,接到炉前6个给煤机的特定部位,做为给煤机的密封风。锅炉的给煤播煤风和密封风总风量占锅炉总运行风量的5.2%。
两个返料器用的流化风由高压风机提供,总风量为4868Nm3/h,约占锅炉总运行风量的1.2%。启动时返料器的流化风总风量是86Nm3/h。
10、分离、回料系统
本炉采用高温蜗壳式旋风分离器,U型返料器,并在分离器料腿处布置了水冷套。 高温旋风分离器实炉测试分离效率不小于99.6%。它具有分离效率高和强化燃烧的优点。
旋风分离器的外壳由钢板制成,进口采用蜗壳形式,内衬绝热材料及耐磨耐火材料。内壁面必须耐磨、光滑,使旋风分离器既有较高的分离性能,又有较长的使用寿命。
旋风分离器将被烟气夹带离开炉膛的物料分离下来,通过U型返料器返回炉膛,烟气
27
则流向尾部对流受热面。U型返料器由布风板、风帽、风室、返料管,舌形挡板,送风管、落灰管组成。该结构的严格密封,合理的料腿差压,送风压力使返料器长期安全可靠运行。运行中靠料腿差压信号通过调节返料风量来调整返灰量。
旋风分离器的中心筒采用高强耐热合金制造,以保证有效的耐高温、抗变形能力。 11、锅炉点火启动
锅炉设置有四台床上点火燃烧器和四台床下点火燃烧器,点火燃烧器由点火油、高能点火器及火焰检测装置组成。床下点火燃烧器为主启动燃烧器,床上点火燃烧器起补燃作用。点火油为机械雾化,床上油每支出力为1000kg/h,油压2.8MPa,床下油每支出力为1200kg/h,雾化油压2.8MPa,油所需助燃空气为一次风。高能点火器布置在油旁边,同时设置火焰监视器,以保证锅炉的安全启动。
每次点火前,采用蒸汽或空气吹扫,由高能点火器点燃油。油和高能点火器布置于点火器的一次风管或风道内,设置的火焰监视器便于观察油的着火情况。
锅炉首次冷态启动时,在流化床内加装床料并进行平整,先启动床下点火燃烧器,加热启动床料,床料在流化状态下升至一定温度并保持稳定,然后启动床上点火燃烧器,床料升至550℃后,开始投煤。可先断续少量给煤,当床料温度持续上升后,加大给煤量并连续给煤直到锅炉启动完毕。
点火燃烧器应调整好合适的一次风和燃烧器冷却风,避免不开启燃烧器冷却风,烧坏燃烧器壳体。
床下点火燃烧器不易作锅炉烘、煮炉使用。 12、锅炉的排渣
煤燃烧后的灰渣以底渣形式从炉膛底部和以飞灰形式从尾部排出。煤的种类、粒度和成灰特性等
会影响底渣和飞灰所占份额。就本设计煤种和要求粒度而言,按底渣占总灰量的15%
28
(粒度0.1~10mm)、飞灰占总灰量的85%(粒度0~0.1mm)来设计。
底渣从布风板上的四个排渣管接到四台水冷滚筒冷渣器。位于中间的一个排渣管作为事故排渣用。维持合适的料层差压排渣,一般差压波动±500Pa,以保证锅炉良好的运行状态。
13、吹灰系统
本炉的吹灰器采用声波吹灰。布置的吹灰器运行高效、可靠。
吹灰器就地位置装有操作开关。使吹灰器既能自动控制,也能手动控制。 吹灰器包括吹灰器、就地开关箱、吹灰器平台、吹灰器炉墙套管、操作室内控制箱
大蒸发量循环流化床锅炉的调试运行要点
近年来,河北省南部电网所属电厂陆续投运了几台国产大型循环流化床(CFB)锅炉,其中450 t/h锅炉是目前国内投入商业运行的最大容量的在役CFB锅炉。通过参加几台CFB锅炉的启动调试,笔者将调试运行的重要之处做了总结。 1锅炉概述
河北热电技改工程#21~#24炉是由东方锅炉有限责任公司制造的DG410/9.81-9型CFB锅炉。该锅炉为高压参数、单汽包、自然循环蒸汽锅炉,半露天布置。锅炉由1个膜式水冷壁炉膛、2台汽冷式旋风分离器和1个由汽冷包墙包覆的尾部竖井(HRA)3部分组成。 锅炉共设4台给煤机和4个石灰石给料口,给煤装置和石灰石口全部置于炉前,在前墙水冷壁下部收缩段沿宽度方向均匀布置。炉膛底部是由水冷壁管弯制围成的水冷风室,通过膨胀节与风道点火器相连。风道点火器共2台,各布置1个高能点火油燃烧器;炉膛密相区水冷壁前后墙上还分别设置了2支床上点火油,用于锅炉启动点火和低负荷稳燃。炉膛两侧分别设置2台多仓式流化床风水冷选择性排灰冷渣器和1个飞灰再循环燃烧接口。 炉膛与尾部竖井之间,布置2台汽冷式旋风分离器,其下部各布置1台“J”阀回料器。在尾部竖井中,从上到下依次布置高温过热器、低温过热器、螺旋肋片管省煤器和空气预热器。过热器系统中设有2级喷水减温器。
29
锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2冷态试验
相对于煤粉锅炉,CFB锅炉的冷态试验具有更为重要的意义,冷态试验为将来的锅炉启动、主要运行参数调整控制、事故判断分析提供可靠的依据,可以说冷态试验结果的准确性是保证CFB锅炉安全、稳定运行的基础。 2.1风量测量装置标定试验
大型CFB锅炉运行中涉及到一次风(流化风)、二次风(分级燃烧)、返料风、拨煤风、点火增压风、排渣用风、冷却风、密封风等诸多风量的调整控制,标定试验的目的在于求出风量测量装置修正系数,保证风量调整控制的准确性。不同于煤粉炉的是,CFB锅 炉各烟风管道布置紧凑,弯头、变径多,风量测量装置所在管道可供测量用的直管段较少。这就要求试验前合理选择临时测孔安装的位置和数量,对于实在不具备测 量条件的风管,可在准确测量其源头母管(或下游支管)和其它并列分管风量后计算推导出其风量,从而求出修正系数。需要强调的是,不能因为CFB锅炉风量测量装置较多, 而在标定试验前就简化对传输差压信号的热工表管的泄漏检查工作,这对于标定试验的准确性是十分重要的。
2.2炉膛布风板空板阻力试验
锅炉炉膛布风装置由水冷风箱和具导向“Γ”型风帽的水冷布风板构成,布风板阻力的测定在布风板上未铺设任何床料的情况下进行,将所有炉门关闭,并将所有排渣管、放灰管堵住。
布风板空板阻力试验前需注意:炉膛布风板上的流化风帽要逐一清通;一次风量应提前标定准确。这2点对于保证试验结果曲线的准确性至关重要。
首次试验一定要细致准确,便于今后锅炉冷态启动前再进行该试验(若条件允许,每次冷态启动前均应进行)时进行对比,以判断布风板风帽是否堵塞。在CFB锅炉启动调试及运行中,因启动前未做空板阻力试验,未能进行比较,并且未清理堵塞风帽,造成启动投料后部分区域未流化,引起床面结焦的事例很多,应引起调试和运行人员的高度重视。
30
2.3料层阻力及临界流化风量试验
布 风板空板阻力试验结束后,可进行料层阻力试验。试验前按厂家推荐颗粒细度在布风板上添加一定厚度的底渣,尽量沿炉膛床面铺放均匀,以免造成不同床压测点测 量值偏差很大,影响试验的准确性。具体试验方法与空板相似。若条件允许,在调试阶段应尽量多改变几次料层厚度进行试验,便于今后CFB锅炉运行中根据床压对床料厚度进行准确判断。
临界流化风量(速)试验是要找出使床料完全流化的最小风量(速)。 该试验可随料层阻力试验一并进行。其原理基于床料在完全流化后,阻力将趋于平稳甚至略有下降,从床层阻力与流化风量的对应曲线上找到该拐点,即可得出相应 床层厚度的最小流化风量。根据相关资料和经验,在床料的筛分粒径较宽的工业应用试验中,从料层阻力曲线上不一定能得到非常准确的拐点,取值应有一定裕量, 并结合流化情况的实际观察结果确定临界流化风量。在今后的运行中,应确保一次风量大于临界流化风量,以保证锅炉的安全运行。
2.4布风装置的布风均匀性和床料流化特性试验
试验时,在布风板上铺一定厚度的床料,启动风机,逐渐增大一次风量,使床料完全流化。观察炉膛的流化情况,然后突停风机,观察整个料层的平整程度,确定布风板的均匀性。 停风机后,床面应平整如镜。否则,应检查床料粗细粒径分布是否均匀,是否有超出范围的过粗或过细床料。若问题仍存在,则检查风帽是否堵塞。
应注意,床料平整不一定代表流化良好。在逐渐增加流化风量时,应打开炉膛人孔门,仔细观察床料表面是否均匀地冒小汽泡,是否同时逐渐流化,有无松动较晚和不动的区域。若有,则一定要分析原因并加以处理,否则将来运行中这些地方容易结焦。 3耐火耐磨材料的固化养护
CFB锅炉的耐火耐磨材料通常需要现场敷设,敷设完成后要进行固化养护(烘炉),其目的不仅在于析出水份,更重要的是通过严格的升温控制,使材料中的钢化纤维相互渗透,形成致密结构,达到设计强度要求,从而起到耐火耐磨的作用。所以材料固化是CFB锅炉
31
调试阶段特有的一道重要工序。
目前CFB锅炉生产厂商没有在设备制造阶段为烘炉提供一定条件,因而烘炉还没有较为通用、成熟的方式。以往采用不同加热方式时发现,采用特制的压缩空气雾化、出力可做较大范围调整的小油效果良好,并具有布置灵活、系统简单、可控制性强的优点。 因 点火风道内部空间较大,在布置临时排烟口时,一定要充分考虑油的位置和烟气流程,尽量减少高温烟气流动的死区,保证固化养护效果。冷渣器内部空间相对狭 小,要防止油火焰直接冲刷耐火耐磨材料,造成超温破坏。所以特别在冷渣器内部迎火侧墙壁上加装了防护钢板。对于炉膛、回料阀、水平烟道等,可用正式油 进行烘烤,并结合吹管等工作同时进行。
烘炉前,应在冷渣器和点火风道的外表面多开一些布置广泛、均匀的滴水孔,保证烘炉过程中耐火耐磨材料析出的水蒸汽能够及时、充分排出。
耐火耐磨材料固化养护时对温度控制的要求很严格,温度控制情况直接影响到养护质量。而CFB锅炉自身的温度测点通常不能完全满足烘炉的控制要求,因此,在烘炉前合理布置一些临时温度测点,这些测点必须能准确反映耐火耐磨材料的真实温度,便于控制。 4床温与床压控制
CFB锅炉与煤粉炉相比,汽水侧控制基本相同,但是床温、床压的控制则是其特有的,也是CFB锅炉运行中需要调节控制的重要运行参数。 4.1床温控制
所谓床温主要是指燃烧密相区内流化物料的料层温度。床温值是由锅炉结构、灰熔点、排放物指标等综合因素决定的,通常控制在850~920 ℃左右。床温过高或过低将造成锅炉结焦灭火。影响床温的因素主要有煤种、给煤量、一/二次风量、返料量及冷灰循环。在循环倍率一定时,主要与煤量和风量有关,其中一次风量起主要作用。
因为大型CFB锅炉的热惯性相应增大,建议运行人员除监视床层温度外,更应密切监视床温变化率,根据床温变化率的幅度迅速做出床温变化原因的准确判断,进而采取相应的
32
调整。根据目前经验,通过密切监视床温变化率进行一定提前量调节是大型CFB锅炉维持床温稳定的有效手段。当锅炉负荷和给煤量较稳定时,床温可用流化风量的增减控制;流化风量调整不力,则应迅速增减相应煤量。
在CFB锅 炉的调试和运行中,投运给煤机故障或跳闸是造成床温大幅变化的主要原因,需很久才能恢复到正常值,所以很有必要做好事故预想:当床温发生异常变化时,迅速 到现场检查给煤机实际运行及出力情况,与主控室运行状态及参数核对。若给煤机跳闸,应立即强启一次,强启失败则马上稳定增加其余给煤机煤量;若主控室煤量 指示出现偏差,迅速以给煤机就地实际煤量进行相应调整。当给煤机在锅炉低负荷运行时跳闸,因炉内混合较差,会出现床温不均和较快下降趋势,若不能迅速恢复 给煤机运行,应降低一、二次风量,投入油燃烧器稳燃,尽快恢复跳闸给煤机。
4.2床压控制
床 压是料层高度的反映。启动前应按设计要求在布风板上加一定厚度的床料。运行中通常通过调整排渣量的多少控制床压的高低。床料多、床压高,对于稳定燃烧、减 小短时间断煤波动的影响、减少排渣可燃物含量有利;但同时床压高会增大一次风压头,电耗增加,同时也大大增加了启动点火阶段加热床料的时间,降低运行经济 性。床料薄、床压低,易造成布风不均匀,引起结焦。对于DG410/9.81-9型CFB锅炉,启动前一般控制床压在3.5 kPa左右,料层高约400 mm;正常投煤运行后床压维持在5.0~6.0 kPa,床层厚度500 mm左右。
床压的控制主要通过排渣量进行调整,所以调试阶段要特别注意摸索冷渣器的排渣工作特性,防止结焦、堵渣,从而保持床压稳定。 5冷渣器运行
该型锅炉在炉膛左右两侧墙共布置4台多仓式流化床风水冷选择性冷渣器。每台冷渣器分为4仓,沿渣的走向分别是第1级的选择仓和之后的3级冷却仓,仓与仓之间用分隔墙隔开,
33
隔墙下端角落设有通渣口,渣绕墙流动。每个小仓均有的布风装置。每台冷渣器设有1个进渣管、1个排渣管、2个出气口。调试中主要存在以下2个问题。 5.1输渣管不落渣
锅炉正常运行 工况下投运冷渣器,时常出现输渣管不落渣的情况:开启落渣管松动风后输渣管不过渣,出渣口温度、选择室床温、床压不发生变化。大幅度调整松动风风门挡板开 度基本不起作用,有时甚至投入起吹堵作用的压缩空气也无效。分析原因有:输渣管松动、风门漏风,冷渣器投运前输渣管内已经结焦,造成投运后无法过渣;内部 不畅通,如测温热电偶插入输渣管过长;炉膛出渣口处流化异常,炉膛不向输渣管落焦。对此,采取如下措施后,情况明显好转。
a. 沿输渣管长度布置的每个松动风支管上加装一道手动截止阀,投运冷渣器时开启,停运时关闭,防止漏风引起结渣;加装手动阀后还能实现通过松动风支管对落渣管逐根吹扫。 b. 利用停炉机会检查输渣管内部情况,将从输渣管下部向上插入的测温热偶长度调至最短,防止影响过渣。
c. 利用停炉机会检查炉膛出渣口处流化情况,发现指向出渣口的定向风帽有结焦堵塞现象,造成渣不能很好地向输渣管流动,应将其清理。
d. 从运行调整上注意控制床温不要过高,尽量保持冷渣器连续稳定运行,减少间断性排渣。 5.2选择室堵渣
在冷渣器运行中,选择室易堵渣,表现为选择室床压经常偏高,即使运行人员发现床压有升高趋势后迅速采取停止进渣、 加大流化风量等措施,床压仍长时间居高不下,因无法排渣而被迫停炉。可能的原因是:目前进渣调节系统还不能对进渣速度进行较好地控制,所以运行人员不易控 制进渣量,进渣量大造成选择室堵渣;炉膛内有结焦现象,排渣时将焦块带入冷渣器,造成选择室堵渣;冷渣器末端排渣管上未设计旋转给料阀,炉渣直接通过排渣 管落下排走,排渣速度无法有效控制,造成冷渣器不能建立正常床压,炉渣在冷渣器内停留时间缩短,渣温较高易造成结焦;各仓间的隔墙下部通渣口可能偏小,焦 块容易在此
34
积存堵塞,造成选择室堵渣。
采取的相应对策如下:严格控制床温,防止超温结焦;控制选择室进渣速度,运行人员加强监视,防止选择室内高温炉渣结焦;在设备改进方面,准备扩大各仓间的隔墙下部通渣口,并提升第3冷却室排渣管伸入床面的高度,从而提高各室床压。
300MW
循环流化床锅炉原理
摘要:本文通过对300MW循环流化床锅炉的介绍,阐述了流化床锅炉本体及其燃烧系统的布置与运行方式,提出了300MW循环流化床锅炉在调试及运行中的控制重点。
关键词:循环流化床锅炉、外置床、回料阀 1 概述
云南开远电厂300MW循环流化床锅炉,是引进法国ALSTOM公司技术,哈尔滨锅炉厂有限公司生产。锅炉型号为HG-1025/17.5-L.HM37,该锅炉系超高压参数、单汽包、自然循环、单炉膛、平衡通风、半露天岛式布置。炉膛宽度15.051m,深度14.703m,高度35.5m。锅炉采用全密封结构,燃用煤质为小龙潭褐煤,设计燃煤量226.5t/h。
2 循环流化床锅炉原理
循环流化床(CFB)锅炉是八十年代发展起来的高效率、低污染和良好综合利用的燃煤技术,由于它在煤种适应性和变负荷能力以及污染物排放上具有的独特优势,使其得到迅速发展。
2.1燃烧机理
循环流化床锅炉采用流态化的燃烧方式,是介于煤粉炉悬浮燃烧和链条炉固定燃烧之间的燃烧方式,即通常所讲的半悬浮燃烧方式。在循环流化床锅炉中,存有大量床料,首次启动时人为添加床料,在锅炉运行时床料主要由煤中的灰、未反应的石灰石、石灰石脱硫反应产物等构成。床料在从布风板下送入的一次风的作用下处于流化状态,煤粒、床料及石灰石被
35
烟气夹带在炉膛内向上运动,在炉膛的不同高度部分大颗粒将沿着炉膛边壁下落,形成物料的内循环;较小固体颗粒被烟气夹带进入分离器,进行分离,绝大多数颗粒被分离下来,一部分通过回料阀直接返回炉膛,另一部分通过外置式换热器后返回炉膛,形成物料的外循环;飞灰随烟气进入尾部烟道。通过炉膛的内循环和炉外的外循环,从而实现燃料不断的往复循环燃烧。
循环流化床根据物料浓度的不同将炉膛分为密相区、过渡区和稀相区三部分,密相区中固体颗粒浓度较大,具有很大的热容量,因此在给煤进入密相区后,可以顺利实现着火;与密相区相比,稀相区的物料浓度很小,稀相区是燃料的燃烧、燃尽段,同时完成炉内气固两相介质与蒸发受热面的换热,以保证锅炉的出力及炉内温度的控制。
2.2脱硫原理
循环流化床锅炉处在830-900℃的工作温度下,在此温度下石灰石可充分发生焙烧反应,使碳酸钙分解为氧化钙,氧化钙与煤燃烧产生的二氧化硫进行盐化反应,生成硫酸钙,以固体形式排出达到脱硫的目的。
石灰石脱硫反应方程 CaCO3=CaO+CO2-热量
Q
CaO+SO2+1/2O2=CaSO4+热量Q
因此循环流化床锅炉可实现炉内高效廉价脱硫,一般脱硫率均在90%以上。同时,由于较低的炉内燃烧温度,循环流化床锅炉中生成的NOX主要由燃料NOX构成即燃料中的N转化成的NOX;而热力NOX即空气中的N转化成的NOX生成量很小;同时循环流化床锅炉采用分级送风的方式即一次风从布风板下送入,二次风分二层从炉膛下部密相区送入,可以有效地抑制NOX的生成。因此循环流化床锅炉中的污染物排放很低。
3 燃用褐煤的优势
该厂设计燃用煤质为小龙潭煤矿褐煤,煤质特性见表1。
表1:煤质特性
36
数值
名称
符号
单位
设计煤种
收到基碳
Car
%
36.72
39.78 校核煤种
收到基氢
Har
%
1.87
2.56
收到基氧
Oar
%
12.59
13.78
收到基氮
Nar
%
1.01
1.04
37
收到基硫
收到基灰分
收到基水分
空干基水分
干燥无灰基挥发
分
低位发热量
St.ar
Aar
Mar
Mad
Vdaf
Qnet.
ar
%
1.66
%
11.45
%
34.7
%
11.00
%
52.70
MJ/kg
12.435
38
0.73
9.51
32.6
13.58
50.85
13.86
灰变形温度
DT
℃
1060
1170
灰软化温度
ST
℃
1110
1210
灰熔化温度
FT
℃
1130
1230
由于该煤质收到基水分为30%以上,内水高达11%,经过破碎后的煤粒进入炉内后同860℃左右的炽热物料接触,煤粒被迅速加热,内水及挥发份迅速膨胀析出,导致煤粒爆裂,故燃用该煤质时原煤粒度控制可以放宽至12~15mm;又由于该煤质挥发份含量较高,使煤的着火温度降低,在流化状态下500℃左右就能着火;又由于该煤质灰分含量较底,灰渣含量较小,故锅炉可靠性大为提高;又由于该煤质灰分中sio2含量较小,对锅炉受热面磨损较轻。综合以上各点,燃用褐煤的锅炉具有极大的优势。
4 锅炉整体布置
炉膛采用裤衩腿、双布风板结构,炉膛内蒸发受热面采用膜式水冷壁及水冷壁延伸墙结构。采用水冷布风板,大直径钟罩式风帽。
在炉膛上部左右两侧各布置有2个高温绝热旋风分离器,分离器上部为圆筒形,下部为锥形。每个高温绝热分离器回料腿下布置一个回料阀和一个外置式换热器。回料阀为气力式自平衡型,流化风用高压风机供给。每个回料阀一侧与炉膛相连,另一侧与外置式换热器相连。分离器分离下来的高温物料一部分直接返送回炉膛,另一部分通过锥型阀进入外置式换
39
热器,通过调整锥型阀的开度来控制外置换热器和回料阀的循环物料分配。在炉膛两侧下部对称布置4个外置式换热器。靠近炉前的两个外置式换热器内布置高温再热器和低温过热器,这两个外置式换热器的主要作用是用来调节再热蒸汽温度;靠近炉后的两个外置式换热器内布置过热器I和过热器II,这两个外置式换热器的主要作用是用来调节床温。
炉膛、分离器、回料阀和外置式换热器构成了循环流化床锅炉的物料循环回路,煤与石灰石在燃烧室内循环往复接触,最终完成煤的燃烧及脱硫反应。烟气及细颗粒飞灰进入尾部对流烟道,飞灰由电除尘器收集。
为了减少燃料对外的散热及防止受热面、炉墙的磨损,在循环流化床锅炉内部衬有大量的耐磨耐火材料,耐磨耐火材料主要布置在水冷风室、燃烧室密相区、旋风分离器、回料阀、外置床及冷渣器内部。
①水冷风室 ②炉膛 ③分离器入口烟道 ④旋风分离器 ⑤回料阀斜腿 ⑥外置床及冷渣器 ⑦分离器中心筒 ⑧分离器出口烟道
5 锅炉辅机设置 5.1烟风系统
锅炉烟风系统配两台一次风机,两台二次风机,五台高压流化风机及两台引风机。一次风的作用是使床料在炉膛内流化,一次风量占总风量的35%; 二次风主要是补充燃烧所需的氧量,分上下两层进入炉膛,其中上层布置20个喷口,下层布置14个喷口,二次风量占总风量的52%。高压流化风的作用是使回料阀的返料鼓泡及外置床、冷渣器内的床料流化,压头要求较高。
5.2点火系统
锅炉启动采用床下床上联合点火方式。点火油床下4只,床上8只。其中床下油的热负荷占总的12%,床上油的热负荷占总的10%,床下油为压缩空气雾化,床上油为蒸汽雾化。
40
5.3给煤系统
原煤自煤场经布置在输煤皮带中的两级碎煤机破碎后进入原煤仓,从原煤仓下落后经称重皮带式给煤机和埋刮板式给煤机到达炉膛两侧。给煤分别由前后墙和侧墙进入燃烧室中,其中前后墙各布置两点,左右墙各布置一点。该炉由三级给煤组成,一级配4台称重皮带式给煤机,二级配4台埋刮板式给煤机,三级配8台螺旋给煤机。每台埋刮板给煤机设三个落煤口,第一、二个落煤口各配一台螺旋给煤机,前后墙落煤口用热二次风密封,两侧墙落煤口用冷一次风密封。两条埋刮板给煤机相同位置落煤口两两混合后由同一点进入炉膛。
左右侧墙给煤点设有播煤风和密封风,播煤风由一次热风供给,落煤口用一次冷风密封;前后墙落煤口用二次热风密封,给煤机用二次冷风密封。煤粒通过给煤系统进入炉膛后,在一次风作用下处于流化状态,并实现循环燃烧。所以,循环流化床炉膛内为正压燃烧区。
5.4灰渣排放系统
燃烧完全后的炉渣从布置在燃烧室密相区下部的排渣口排出,经冷渣器冷却到150℃后经输渣系统运走。排渣量的大小通过锥形阀的开度来控制,以保持床压、床温在允许范围内。
5.5石灰石系统
两台炉共设置一座石灰石粉库,几何容积为1200 m3,配置两个出料口,每个出料口设置一台仓泵。每台炉设置一个石灰石粉仓,几何容积为101 m3,布置在主厂房煤仓间内,每个石灰石粉仓配置2个出料口,每个出料口设置一台石灰石粉混合器及一台石灰石输送风机。
锅炉燃煤煤种及其它参数如下表2:
表2:锅炉设计数据
名称
单 位
设计煤种
校核煤种1
校核煤种2
41
%
硫含量(St.ar)
1.66
0.73
1.8
%
灰份(Aar)
11.45
9.51
14.05
钙硫比
≤1.7
%
脱硫率
93
mg/m3
排烟SO2浓度
≤400(在6%含氧量的干烟气状态)
t/h
原煤消耗量
228
214
217
为满足锅炉脱硫需要,需要向锅炉连续输送石灰石粉。有关设计数据如下表3:
42
表3:石灰石粉成分
SiO2
Al2O3
Fe2O3
CaO
MgO
SO
Mt
3
烧矢量
1.0%
4%
0.1
8%
0.1
55.11%
6%
0.5
<0.15%
3%
0.2
41.32%
石灰石粉堆积容重:1.3t/m3(石灰石粉粒径≤1mm) 石灰石粉耗量:22t/h(设计煤种)
石灰石气粉混合物由炉膛前后墙四点进入炉内参与燃烧反应,达到炉内脱硫降低SO2排放浓度的目的。
6 锅炉调试及运行中的控制重点 6.1结焦预防控制
循环流化床锅炉是靠床底部的一次风把物料流化并循环燃烧,其循环回路分为内循环和外循环。内循环是在炉膛内完成的,其流化动力是一次风;外循环是在分离器、回料阀、外置床内完成的,其流化动力是高压流化风。床面结焦,主要是指布风板上的物料因为流化不良、超温结焦。
(1)流化不良的预防方法:
①必需保证布风板风帽小孔的畅通,这就要求在加床料之前把风帽小孔及床面清理干
43
净;
②运行后一次风量必需大于临界流化风量;
③升温升压过程中,控制升温速度,防止炉内耐磨耐火材料脱落堵塞风帽;④原煤粒度控制在6~10mm之间,避免因为原煤粒度过大流化不良;
⑤控制燃煤中矸石及铁块的含量,定期将大颗粒物料排除,确保流化良好。 ⑥在升负荷及调整过程中,加煤和调风不能猛增猛减。 (2)超温结焦的预防控制方法:
①由于小龙潭褐煤灰变形温度仅1060℃,因此床温不能控制过高,运行时控制床温在860℃—900℃之间;炉膛布风板床温控制靠调整外置床返料量和密相区物料高度来实现;回料阀布风板、外置床布风板、冷渣器布风板床温靠调整高压流化风量及床料量来实现。
②控制合理的床压,防止燃煤直接接触风帽造成燃煤堆积爆燃超温结焦。
③点火启动阶段,控制合理油配风,保证燃油完全燃烧,避免未燃尽油雾沾附在煤粒上造成结焦。
6.2两床失稳预防控制
由于此锅炉炉膛为裤衩形,布置了双布风板、双燃烧室,床下燃烧器分别布置在两布风板下,床上油分别布置在两燃烧室密相区下部,给煤点分别布置在两燃烧室上部,每侧两套给煤系统。所以,如果两侧燃烧负荷如存在较大的偏差,就可能导致两床失稳,引起床压波动,严重时影响机组安全运行。在运行中,应从以下方面加以重视:
(1)运行中给煤、返料量、排渣控制合理,保证两侧床压一致。
(2)给煤量调整时应将各点给煤均匀,使燃煤在整个床面分布均匀,如一侧给煤量减少时,应立即减少另一侧给煤量,控制炉膛两侧床压偏差小于2.5kPa。
(3)炉膛两侧外置床返料量调整基本一致,避免因为返料量偏差而产生床温床压偏差。
44
(4)调整炉膛两侧风量及给煤量,使两侧床温及一次风量均衡。 6.3汽温超温预防控制
由于小龙潭褐煤飞灰容重较小(0.85t/m3),导致稀相区飞灰份额增大,炉内热量分配与设计值出现偏差,因此应加强各风量、减温水量和外置床的控制,防止过热汽温和再热汽温超温事故发生。在调试及运行中,应从以下方面加以重视:
(1)运行中升降负荷时要缓慢进行,升负荷加煤时操作幅度不能过大,且应先加风后加煤,减负荷减煤时操作幅度也不能过大,应先减煤后减风,并采用少量多次的方式进行。给煤机断煤时应立即减少一次风量,防止煤粒在分离器内燃烧,造成分离器出口烟温升高,导致过热器、再热器汽温超温。恢复后加煤加风速度不能过快,保证给煤着火迅速。
(2)由于小龙潭褐煤内水含量较高,虽然热爆特性较好,仍应控制入炉煤粒度在8~10mm之间。
(3)合理调整外置床流化风量,防止外置床流化不良结焦,造成过热器、再热器汽温超温。合理调整外置床进料量,控制外置床内各级过热器、再热器进出口汽温在设计范围内。
(4)调整一次风量大小,以使炉膛浓相区和稀相区热量分配合理,控制炉膛出口烟温,保证尾部烟道过热器、再热器管换热系数合理,避免因换热系数过大而超温。
(5)加强尾部受热面吹灰,减少积灰及烟温偏差形成的汽温超温。
(6)高加停用及低负荷运行时注意调整减温水量和入炉一、二次风量的大小。 (7)运行中可适当增大床压,增大炉内灰浓度,保证合理的炉膛吸热量。 6.4堵煤预防控制
循环流化床锅炉无煤粉制备系统,粗、细碎煤机将原煤破碎成6~8mm的煤粒后进入原煤斗,再通过给煤机直接进入炉内。由于破碎后的煤粒表面积增大,加之小龙潭褐煤全水分高达30%,内水分高达11%,极易在碎煤机、原煤斗、给煤机落煤口等部位发生堵煤现象。
45
堵煤时将直接危及锅炉的稳定运行,主要故障有:
(1)原煤破碎设备堵塞:原煤破碎设备堵塞是指原煤粘在破碎机出口及入口管道上,导致下煤不畅输煤中断,或原煤粘在破碎机内部导致破碎机堵塞;
(2)原煤斗堵煤:原煤斗堵煤是由于破碎后的煤粒在原煤斗内受到挤压,导致在原煤斗内搭桥下煤不畅;且原煤斗设计为方形,原煤和煤斗之间的接触面积增大,下煤阻力增大导致原煤斗堵煤;
(3)落煤口堵煤:进入落煤口的煤粒由于受到回灰的加热,导致煤粒中外水分大量蒸发,上升水蒸汽在落煤口聚集并冷凝成水滴,最终导致煤粒搭桥堵塞落煤口。
(4)运行中不但要加强给煤设备的监视及维护,还要注意以上区域是否堵煤,如发生堵煤应及时疏通,在给煤恢复后应注意燃烧及汽温的控制。
6.5耐磨耐火材料脱落预防控制
由于循环流化床锅炉在风道燃烧器、水冷风室、炉膛、旋风分离器、回料阀、外置床、冷渣器内衬有大量耐磨耐火材料,如温升控制不当,可能导致耐磨耐火材料脱落,影响物料流化及锅炉安全运行。为防止耐磨耐火材料脱落,首先安装时应保证安装质量,烘炉时严格按照耐磨耐火材料温升曲线进行烘烤,并把水分烘烤到2%以下;点火启动时保证炉膛整体温升及各部分局部温升小于100℃/h,并注意各风量配比合理,避免局部超温。
锅炉常用计量单位及换算
锅炉常用计量单位及换算 1、锅炉蒸发量与锅炉热效率
1吨/时(t/h)≈60×104千卡(大卡)/时(kcal/h) ≈0.7兆瓦(MW)
46
2、锅炉蒸发量与锅炉马力
1吨/时(t/h)≈71.1锅炉马力(BHP) 3、锅炉压力工程单位与国际计量单位 1兆帕(Mpa)≈10公斤力/厘米2 (kgf/cm2) 4、兆帕与帕
1兆帕(Mpa)=106帕(pa) 1帕(pa)=0.01mbar(毫巴)
≈10-5公斤力/厘米2(工程大气压)(kgf/cm2) 1帕(pa)≈0.1毫米水柱(mmH2O) 5、力与重力
1公斤力(kgf)=9.81牛顿(N) 6、热量
1千卡(大卡)(kcal)=4.187千焦(KJ) 7、体(容)积
1立方米(m3)=1000升(L) 1升(L)=1000毫升(ML)
300MW循环流化床锅炉介绍
300MW循环流化床锅炉介绍
来源:云南电力试验研究院(集团)有限公司 650051 作者:昌树文、李明亮、曹兴伟
47
2007-4-14 8:48:58
摘要:本文通过对300MW循环流化床锅炉的介绍,阐述了流化床锅炉本体及其燃烧系统的布置与运行方式,提出了300MW循环流化床锅炉在调试及运行中的控制重点。
关键词:循环流化床锅炉、外置床、回料阀 1 概述
云南开远电厂300MW循环流化床锅炉,是引进法国ALSTOM公司技术,哈尔滨锅炉厂有限公司生产。锅炉型号为HG-1025/17.5-L.HM37,该锅炉系超高压参数、单汽包、自然循环、单炉膛、平衡通风、半露天岛式布置。炉膛宽度15.051m,深度14.703m,高度35.5m。锅炉采用全密封结构,燃用煤质为小龙潭褐煤,设计燃煤量226.5t/h。
2 循环流化床锅炉原理
循环流化床(CFB)锅炉是八十年代发展起来的高效率、低污染和良好综合利用的燃煤技术,由于它在煤种适应性和变负荷能力以及污染物排放上具有的独特优势,使其得到迅速发展。
2.1燃烧机理
循环流化床锅炉采用流态化的燃烧方式,是介于煤粉炉悬浮燃烧和链条炉固定燃烧之间
48
的燃烧方式,即通常所讲的半悬浮燃烧方式。在循环流化床锅炉中,存有大量床料,首次启动时人为添加床料,在锅炉运行时床料主要由煤中的灰、未反应的石灰石、石灰石脱硫反应产物等构成。床料在从布风板下送入的一次风的作用下处于流化状态,煤粒、床料及石灰石被烟气夹带在炉膛内向上运动,在炉膛的不同高度部分大颗粒将沿着炉膛边壁下落,形成物料的内循环;较小固体颗粒被烟气夹带进入分离器,进行分离,绝大多数颗粒被分离下来,一部分通过回料阀直接返回炉膛,另一部分通过外置式换热器后返回炉膛,形成物料的外循环;飞灰随烟气进入尾部烟道。通过炉膛的内循环和炉外的外循环,从而实现燃料不断的往复循环燃烧。
循环流化床根据物料浓度的不同将炉膛分为密相区、过渡区和稀相区三部分,密相区中固体颗粒浓度较大,具有很大的热容量,因此在给煤进入密相区后,可以顺利实现着火;与密相区相比,稀相区的物料浓度很小,稀相区是燃料的燃烧、燃尽段,同时完成炉内气固两相介质与蒸发受热面的换热,以保证锅炉的出力及炉内温度的控制。
2.2脱硫原理
循环流化床锅炉处在830-900℃的工作温度下,在此温度下石灰石可充分发生焙烧反应,使碳酸钙分解为氧化钙,氧化钙与煤燃烧产生的二氧化硫进行盐化反应,生成硫酸钙,以固体形式排出达到脱硫的目的。
石灰石脱硫反应方程 CaCO3=CaO+CO2-热量Q CaO+SO2+1/2O2=CaSO4+热量Q
因此循环流化床锅炉可实现炉内高效廉价脱硫,一般脱硫率均在90%以上。同时,由于较低的炉内燃烧温度,循环流化床锅炉中生成的NOX主要由燃料NOX构成即燃料中的N转化成的NOX;而热力NOX即空气中的N转化成的NOX生成量很小;同时循环流化床锅炉采用分级送风的方式即一次风从布风板下送入,二次风分二层从炉膛下部密相区送入,可以有效地抑制NOX的生成。因此循环流化床锅炉中的污染物排放很低。
49
3 燃用褐煤的优势
该厂设计燃用煤质为小龙潭煤矿褐煤,煤质特性见表1。
表1:煤质特性
名 称
收到基碳
收到基氢
收到基氧
收到基氮
数 符
单
位 号
设
计煤种
C
36.
%
ar
72
H
1.8
%
ar
7
O
12.
%
ar
59
N
1.0
%
ar
1
值
校核煤种
39.78
2.56
13.78
1.04
50
S
收到基硫
%
1.6
0.73
收到基灰分
收到基水分
空干基水分
干燥无灰基挥发分
低位发热
量
灰变形温
t.ar
6
A
11.
%
ar
45
M
34.
%
ar
7
M
11.
%
ad
00
V
52.
%
daf
70
Q
M
12.
net
J/kg
435
.ar
D
℃
10
9.51
32.6
13.58
50.85
13.86
1170
51
度 T 60
灰软化温度
S
℃
T
111
1210
0
灰熔化温度
F
℃
T
113
1230
0
由于该煤质收到基水分为30%以上,内水高达11%,经过破碎后的煤粒进入炉内后同860℃左右的炽热物料接触,煤粒被迅速加热,内水及挥发份迅速膨胀析出,导致煤粒爆裂,故燃用该煤质时原煤粒度控制可以放宽至12~15mm;又由于该煤质挥发份含量较高,使煤的着火温度降低,在流化状态下500℃左右就能着火;又由于该煤质灰分含量较底,灰渣含量较小,故锅炉可靠性大为提高;又由于该煤质灰分中sio2含量较小,对锅炉受热面磨损较轻。综合以上各点,燃用褐煤的锅炉具有极大的优势。
4 锅炉整体布置
炉膛采用裤衩腿、双布风板结构,炉膛内蒸发受热面采用膜式水冷壁及水冷壁延伸墙结构。采用水冷布风板,大直径钟罩式风帽。
在炉膛上部左右两侧各布置有2个高温绝热旋风分离器,分离器上部为圆筒形,下部为锥形。每个高温绝热分离器回料腿下布置一个回料阀和一个外置式换热器。回料阀为气力式自平衡型,流化风用高压风机供给。每个回料阀一侧与炉膛相连,另一侧与外置式换热器相连。分离器分离下来的高温物料一部分直接返送回炉膛,另一部分通过锥型阀进入外置式换热器,通过调整锥型阀的开度来控制外置换热器和回料阀的循环物料分配。在炉膛两侧下部对称布置4个外置式换热器。靠近炉前的两个外置式换热器内布置高温再热器和低温过热器,这两个
52
外置式换热器的主要作用是用来调节再热蒸汽温度;靠近炉后的两个外置式换热器内布置过热器I和过热器II,这两个外置式换热器的主要作用是用来调节床温。
炉膛、分离器、回料阀和外置式换热器构成了循环流化床锅炉的物料循环回路,煤与石灰石在燃烧室内循环往复接触,最终完成煤的燃烧及脱硫反应。烟气及细颗粒飞灰进入尾部对流烟道,飞灰由电除尘器收集。
为了减少燃料对外的散热及防止受热面、炉墙的磨损,在循环流化床锅炉内部衬有大量的耐磨耐火材料,耐磨耐火材料主要布置在水冷风室、燃烧室密相区、旋风分离器、回料阀、外置床及冷渣器内部
火电厂主要设备包括:
一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。
送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。
引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。
磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。
空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。
炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。
53
汽轮机本体
汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。
汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。
给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。
高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。
除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。
凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。
凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。
油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。
在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、 油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。
54
同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。
转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。
主变压器:利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级的交流电的一种设备。
6KV、380V配电装置:完成电能分配,控制设备的装置。 电机:将电能转换成机械能或将机械能转换成电能的电能转换器。
蓄电池:指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池
控制盘:有的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。
循环流化床锅炉
锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周有膜式水冷壁组成。自下而上,依次为一次风室、浓相床、悬浮段、蒸发管、高温过热器、低温过热器及高温省煤器。尾部竖井采用支撑结构,由上而下布置低温省煤器及管式空气预热器。两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。
锅炉采用床下点火(油或煤气),分级燃烧,一次风率占50—60%飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在98—99%以上。
55
分离器入口烟温在450度左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为10—15左右。
循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。
床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床温860度的恒定值,这个值是最佳的脱硫温度。当自控制不投入时,靠手动也能维持恒定的温床。 保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率。最佳的环保特性以及广泛的燃料适应性,越来越受到广泛关注,完全适合我国国情及发展优势。
国内烟气脱硫技术
我国目前的经济条件和技术条件还不允许象发达国家那样投入大量的人力和财力,并且在对二氧化硫的治理方面起步很晚,至今还处于摸索阶段,国内一些电厂的烟气脱硫装置大部分欧洲、美国、日本引进的技术,或者是试验性的,且设备处理的烟气量很小,还不成熟。不过由于近几年国家环保要求的严格,脱硫工程是所有新建电厂必须的建设的。因此我国开始逐步以国外的技术为基础研制适合自己国家的脱硫技术。以下是国内在用的脱硫技术中较为成熟的一些,由于资料有限只能列举其中的一些供读者阅读。
石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环
56
与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。 旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。 喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。 肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。 炉内喷钙尾部增湿烟气脱硫工艺
57
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。 烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈磨擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。 典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占
58
地面积少,投资较省,尤其适合于老机组烟气脱硫。 海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和(HNO3)。然后硫酸和与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。 氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至
59
90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
60
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.net 版权所有 湘ICP备2024080961号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务