应用scikit-learn做文本分类
分类: Data Mining Machine Learning Python2014-04-13 20:53 12438人阅读 评论(16) 收藏 举报
20newsgroups文本挖掘Pythonscikitscipy 文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢!
嗯,说正文。20newsgroups官网上给出了3个数据集,这里我们用最原始的20news-19997.tar.gz。
分为以下几个过程:
加载数据集 提feature 分类
o Naive Bayes o KNN o SVM
聚类
说明: scipy官网上有参考,但是看着有点乱,而且有bug。本文中我们分块来看。
Environment:Python 2.7 + Scipy (scikit-learn)
1.加载数据集
从20news-19997.tar.gz下载数据集,解压到scikit_learn_data文件夹下,加载数据,详见code注释。 [python] view plaincopy 1. #first extract the 20 news_group dataset to /scikit_learn_data 2. from sklearn.datasets import fetch_20newsgroups 3. #all categories
4. #newsgroup_train = fetch_20newsgroups(subset='train') 5. #part categories
6. categories = ['comp.graphics', 7. 'comp.os.ms-windows.misc', 8. 'comp.sys.ibm.pc.hardware', 9. 'comp.sys.mac.hardware', 10. 'comp.windows.x'];
11. newsgroup_train = fetch_20newsgroups(subset = 'train',categories = categorie
s);
可以检验是否load好了:
[python] view plaincopy
1. #print category names 2. from pprint import pprint
3. pprint(list(newsgroup_train.target_names))
结果:
['comp.graphics',
'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x']
2. 提feature:
刚才load进来的newsgroup_train就是一篇篇document,我们要从中提取feature,即词频啊神马的,用fit_transform
Method 1. HashingVectorizer,规定feature个数
[python] view plaincopy
1. #newsgroup_train.data is the original documents, but we need to extract the
2. #feature vectors inorder to model the text data
3. from sklearn.feature_extraction.text import HashingVectorizer
4. vectorizer = HashingVectorizer(stop_words = 'english',non_negative = True, 5. n_features = 10000)
6. fea_train = vectorizer.fit_transform(newsgroup_train.data) 7. fea_test = vectorizer.fit_transform(newsgroups_test.data); 8. 9.
10. #return feature vector 'fea_train' [n_samples,n_features] 11. print 'Size of fea_train:' + repr(fea_train.shape) 12. print 'Size of fea_train:' + repr(fea_test.shape) 13. #11314 documents, 130107 vectors for all categories 14. print 'The average feature sparsity is {0:.3f}%'.format(
15. fea_train.nnz/float(fea_train.shape[0]*fea_train.shape[1])*100);
结果:
Size of fea_train:(2936, 10000) Size of fea_train:(1955, 10000) The average feature sparsity is 1.002%
因为我们只取了10000个词,即10000维feature,稀疏度还不算低。而实际上用TfidfVectorizer统计可得到上万维的feature,我统计的全部样本是13w,就是一个相当稀疏的矩阵了。
**************************************************************************************************************************
上面代码注释说TF-IDF在train和test上提取的feature维度不同,那么怎么让它们相同呢?有两种方法:
Method 2. CountVectorizer+TfidfTransformer
让两个CountVectorizer共享vocabulary:
[python] view plaincopy
1. #---------------------------------------------------- 2. #method 1:CountVectorizer+TfidfTransformer
3. print '*************************\\nCountVectorizer+TfidfTransformer\\n********
*****************'
4. from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
5. count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5); 6. counts_train = count_v1.fit_transform(newsgroup_train.data); 7. print \"the shape of train is \"+repr(counts_train.shape) 8.
9. count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_); 10. counts_test = count_v2.fit_transform(newsgroups_test.data); 11. print \"the shape of test is \"+repr(counts_test.shape) 12.
13. tfidftransformer = TfidfTransformer(); 14.
15. tfidf_train = tfidftransformer.fit(counts_train).transform(counts_train); 16. tfidf_test = tfidftransformer.fit(counts_test).transform(counts_test);
结果:
*************************
CountVectorizer+TfidfTransformer *************************
the shape of train is (2936, 633) the shape of test is (1955, 633)
Method 3. TfidfVectorizer
让两个TfidfVectorizer共享vocabulary:
[python] view plaincopy
1. #method 2:TfidfVectorizer
2. print '*************************\\nTfidfVectorizer\\n*************************
'
3. from sklearn.feature_extraction.text import TfidfVectorizer 4. tv = TfidfVectorizer(sublinear_tf = True,
5. max_df = 0.5,
6. stop_words = 'english'); 7. tfidf_train_2 = tv.fit_transform(newsgroup_train.data); 8. tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_); 9. tfidf_test_2 = tv2.fit_transform(newsgroups_test.data); 10. print \"the shape of train is \"+repr(tfidf_train_2.shape) 11. print \"the shape of test is \"+repr(tfidf_test_2.shape) 12. analyze = tv.build_analyzer()
13. tv.get_feature_names()#statistical features/terms
结果:
************************* TfidfVectorizer
*************************
the shape of train is (2936, 633) the shape of test is (1955, 633)
此外,还有sklearn里封装好的抓feature函数,fetch_20newsgroups_vectorized
Method 4. fetch_20newsgroups_vectorized
但是这种方法不能挑出几个类的feature,只能全部20个类的feature全部弄出来:
[python] view plaincopy
1. print '*************************\\nfetch_20newsgroups_vectorized\\n***********
**************'
2. from sklearn.datasets import fetch_20newsgroups_vectorized 3. tfidf_train_3 = fetch_20newsgroups_vectorized(subset = 'train'); 4. tfidf_test_3 = fetch_20newsgroups_vectorized(subset = 'test'); 5. print \"the shape of train is \"+repr(tfidf_train_3.data.shape) 6. print \"the shape of test is \"+repr(tfidf_test_3.data.shape)
结果:
************************* fetch_20newsgroups_vectorized *************************
the shape of train is (11314, 130107) the shape of test is (7532, 130107)
3. 分类
3.1 Multinomial Naive Bayes Classifier
见代码&comment,不解释
[python] view plaincopy
1. ###################################################### 2. #Multinomial Naive Bayes Classifier
3. print '*************************\\nNaive Bayes\\n*************************' 4. from sklearn.naive_bayes import MultinomialNB 5. from sklearn import metrics
6. newsgroups_test = fetch_20newsgroups(subset = 'test',
7. categories = categories); 8. fea_test = vectorizer.fit_transform(newsgroups_test.data); 9. #create the Multinomial Naive Bayesian Classifier 10. clf = MultinomialNB(alpha = 0.01)
11. clf.fit(fea_train,newsgroup_train.target); 12. pred = clf.predict(fea_test);
13. calculate_result(newsgroups_test.target,pred);
14. #notice here we can see that f1_score is not equal to 2*precision*recall/(pr
ecision+recall)
15. #because the m_precision and m_recall we get is averaged, however, metrics.f
1_score() calculates
16. #weithed average, i.e., takes into the number of each class into considerati
on.
注意我最后的3行注释,为什么f1≠2*(准确率*召回率)/(准确率+召回率)
其中,函数calculate_result计算f1:
[python] view plaincopy
1. def calculate_result(actual,pred):
2. m_precision = metrics.precision_score(actual,pred); 3. m_recall = metrics.recall_score(actual,pred); 4. print 'predict info:'
5. print 'precision:{0:.3f}'.format(m_precision) 6. print 'recall:{0:0.3f}'.format(m_recall);
7. print 'f1-score:{0:.3f}'.format(metrics.f1_score(actual,pred)); 8.
3.2 KNN:
[python] view plaincopy 1. ###################################################### 2. #KNN Classifier
3. from sklearn.neighbors import KNeighborsClassifier
4. print '*************************\\nKNN\\n*************************' 5. knnclf = KNeighborsClassifier()#default with k=5 6. knnclf.fit(fea_train,newsgroup_train.target) 7. pred = knnclf.predict(fea_test);
8. calculate_result(newsgroups_test.target,pred);
3.3 SVM:
[cpp] view plaincopy 1. ###################################################### 2. #SVM Classifier
3. from sklearn.svm import SVC
4. print '*************************\\nSVM\\n*************************' 5. svclf = SVC(kernel = 'linear')#default with 'rbf' 6. svclf.fit(fea_train,newsgroup_train.target) 7. pred = svclf.predict(fea_test);
8. calculate_result(newsgroups_test.target,pred);
结果:
************************* Naive Bayes
************************* predict info: precision:0.7 recall:0.759 f1-score:0.760
************************* KNN
************************* predict info: precision:0.2 recall:0.635 f1-score:0.636
************************* SVM
************************* predict info: precision:0.777 recall:0.774 f1-score:0.774
4. 聚类
[cpp] view plaincopy 1. ###################################################### 2. #KMeans Cluster
3. from sklearn.cluster import KMeans
4. print '*************************\\nKMeans\\n*************************' 5. pred = KMeans(n_clusters=5) 6. pred.fit(fea_test)
7. calculate_result(newsgroups_test.target,pred.labels_);
结果:
************************* KMeans
************************* predict info: precision:0.2 recall:0.226 f1-score:0.213
本文全部代码下载:在此
貌似准确率好低……那我们用全部特征吧……结果如下:
************************* Naive Bayes
************************* predict info: precision:0.771
recall:0.770 f1-score:0.769
************************* KNN
************************* predict info: precision:0.652 recall:0.5 f1-score:0.5
************************* SVM
************************* predict info: precision:0.819 recall:0.816 f1-score:0.816
************************* KMeans
************************* predict info: precision:0.2 recall:0.313 f1-score:0.266
关于Python更多的学习资料将继续更新,敬请关注本博客和新浪微博Rachel Zhang。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.net 版权所有 湘ICP备2024080961号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务